当前位置 : 主页 > 编程语言 > python >

python网络爬虫——CrawlSpider

来源:互联网 收集:自由互联 发布时间:2021-06-25
- CrawlSpider - 作用:用于进行全站数据爬取 - CrawlSpider就是Spider的一个子类 - 如何新建一个基于CrawlSpider的爬虫文件 - scrapy genspider -t crawl xxx www.xxx.com - 例:choutiPro - LinkExtractor连接提取器

- CrawlSpider
  - 作用:用于进行全站数据爬取
  - CrawlSpider就是Spider的一个子类
  - 如何新建一个基于CrawlSpider的爬虫文件
    - scrapy genspider -t crawl xxx www.xxx.com
  - 例:choutiPro

  - LinkExtractor连接提取器:根据指定规则(正则)进行连接的提取
  - Rule规则解析器:将连接提取器提取到的连接进行请求发送,然后对获取的
  页面进行指定规则【callback】的解析
  - 一个链接提取器对应唯一一个规则解析器
    - 例:crawlspider深度(全栈)爬取【sunlinecrawl例】

- 分布式(通常用不到,爬取数据量级巨大、时间少时用分布式)
  - 概念:可将一组程序执行在多态机器上(分布式机群),使其进行数据的分布爬取
  - 原生的scrapy框架是否可以实现分布式?
    不能

抽屉:

# spider文件

import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule

class ChoutiSpider(CrawlSpider):
    name = chouti
    # allowed_domains = [‘www.xxx.com‘]
    start_urls = [https://dig.chouti.com/1]

    # 连接提取器:从起始url对应的页面中提取符合规则的所有连接;allow=正则表达式
    # 正则为空的话,提取页面中所有连接
    link = LinkExtractor(allow=r\d+)
    rules = (
        # 规则解析器:将连接提取器提取到的连接对应的页面源码进行指定规则的解析
        # Rule自动发送对应链接的请求
        Rule(link, callback=parse_item, follow=True),
        # follow:True 将连接提取器 继续 作用到 连接提取器提取出来的连接 对应的页面源码中
    )

    def parse_item(self, response):
        item = {}
        #item[‘domain_id‘] = response.xpath(‘//input[@id="sid"]/@value‘).get()
        #item[‘name‘] = response.xpath(‘//div[@id="name"]‘).get()
        #item[‘description‘] = response.xpath(‘//div[@id="description"]‘).get()
        return item

 

阳光热线网

# 1.spider文件

import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from sunLineCrawl.items import SunlinecrawlItem,ContentItem

class SunSpider(CrawlSpider):
    name = sun
    # allowed_domains = [‘www.xxx.com‘]
    start_urls = [http://wz.sun0769.com/index.php/question/questionType?type=4&page=]

    link = LinkExtractor(allow=rtype=4&page=\d+) # 提取页码连接
    link1 = LinkExtractor(allow=rquestion/2019\d+/\d+\.shtml) # 提取详情页连接
    rules = (
        Rule(link, callback=parse_item, follow=False),
        Rule(link1, callback=parse_detail),
    )


    # 解析出标题和网友名称数据
    def parse_item(self, response):
        tr_list = response.xpath(//*[@id="morelist"]/div/table[2]//tr/td/table//tr)
        for tr in tr_list:
            title = tr.xpath(./td[2]/a[2]/text()).extract_first()
            net_friend = tr.xpath(./td[4]/text()).extract_first()
            item = SunlinecrawlItem()
            item[title] = title
            item[net_friend] = net_friend

            yield item

    # 解析出新闻的内容
    def parse_detail(self,response):
        content = response.xpath(/html/body/div[9]/table[2]//tr[1]/td/div[2]//text()).extract()
        content = ‘‘.join(content)
        item = ContentItem()
        item[content] = content

        yield item
--------------------------------------------------------------------------------
# 2.items文件

import scrapy

class SunlinecrawlItem(scrapy.Item):
    title = scrapy.Field()
    net_friend = scrapy.Field()

class ContentItem(scrapy.Item):
    content = scrapy.Field()
--------------------------------------------------------------------------------
# 3.pipelines文件

class SunlinecrawlPipeline(object):
    def process_item(self, item, spider):
        # 确定接受到的item是什么类型(Content/Sunlinecrawl)
        if item.__class__.__name__ == SunlinecrawlItem:
            print(item[title],item[net_friend])

        else:
            print(item[content])

        return item
--------------------------------------------------------------------------------
# 4.setting文件

BOT_NAME = sunLineCrawl

SPIDER_MODULES = [sunLineCrawl.spiders]
NEWSPIDER_MODULE = sunLineCrawl.spiders

LOG_LEVEL = ERROR

USER_AGENT = Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36

ROBOTSTXT_OBEY = False

ITEM_PIPELINES = {
   sunLineCrawl.pipelines.SunlinecrawlPipeline: 300,
}
网友评论