如图所示: 以此图为例寻找末尾为“m”的名称。这里使用广度优先搜索,这个可以回答两类问题: 第一类问题:从节点A出发,有前往节点B的路径吗? 第二类问题:从节点A出发,前往
如图所示:
以此图为例寻找末尾为“m”的名称。这里使用广度优先搜索,这个可以回答两类问题:
第一类问题:从节点A出发,有前往节点B的路径吗?
第二类问题:从节点A出发,前往节点B的哪条路径最短?
那这里其实就是寻找末尾为“m”名称的最短路径。
from collections import deque
def person_is_seller(name):
return name[-1] == ‘m‘
graph = {}
graph["you"] = ["alice", "bob", "claire"]
graph["bob"] = ["anuj", "peggy"]
graph["alice"] = ["peggy"]
graph["claire"] = ["thom", "jonny"]
graph["anuj"] = []
graph["peggy"] = []
graph["thom"] = []
graph["jonny"] = []
def search(name):
search_queue = deque()
search_queue += graph[name]
searched = []
while search_queue:
person = search_queue.popleft()
if person not in searched:
if person_is_seller(person):
print(person + ‘ is a mongo seller‘)
return True
else:
search_queue += graph[person]
searched.append(person)
return False
search("you")
这里使用到了散列表的概念,以及Python中deque函数来创建一个双端队列。