我正在寻找一个函数weighted_sample的合理定义,它不会为给定权重列表返回一个随机索引(这类似于 def weighted_choice(weights, random=random): """ Given a list of weights [w_0, w_1, ..., w_n-1], return an index i
def weighted_choice(weights, random=random): """ Given a list of weights [w_0, w_1, ..., w_n-1], return an index i in range(n) with probability proportional to w_i. """ rnd = random.random() * sum(weights) for i, w in enumerate(weights): if w<0: raise ValueError("Negative weight encountered.") rnd -= w if rnd < 0: return i raise ValueError("Sum of weights is not positive")
给出一个具有恒定权重的分类分布)但是随机抽样的那些k,没有替换,就像random.sample行为与random.choice相比.
就像weighted_choice可以写成
lambda weights: random.choice([val for val, cnt in enumerate(weights) for i in range(cnt)])
weighted_sample可以写成
lambda weights, k: random.sample([val for val, cnt in enumerate(weights) for i in range(cnt)], k)
但我想要一个解决方案,不需要我将权重解析为(可能是巨大的)列表.
编辑:如果有任何好的算法可以返回一个直方图/频率列表(与参数权重的格式相同)而不是一系列索引,这也是非常有用的.
从你的代码:..weight_sample_indexes = lambda weights, k: random.sample([val for val, cnt in enumerate(weights) for i in range(cnt)], k)
..我认为权重是正整数,而“没有替换”你的意思是没有替换解开的序列.
这是一个基于random.sample和O(log n)__getitem__的解决方案:
import bisect import random from collections import Counter, Sequence def weighted_sample(population, weights, k): return random.sample(WeightedPopulation(population, weights), k) class WeightedPopulation(Sequence): def __init__(self, population, weights): assert len(population) == len(weights) > 0 self.population = population self.cumweights = [] cumsum = 0 # compute cumulative weight for w in weights: cumsum += w self.cumweights.append(cumsum) def __len__(self): return self.cumweights[-1] def __getitem__(self, i): if not 0 <= i < len(self): raise IndexError(i) return self.population[bisect.bisect(self.cumweights, i)]
例
total = Counter() for _ in range(1000): sample = weighted_sample("abc", [1,10,2], 5) total.update(sample) print(sample) print("Frequences %s" % (dict(Counter(sample)),)) # Check that values are sane print("Total " + ', '.join("%s: %.0f" % (val, count * 1.0 / min(total.values())) for val, count in total.most_common()))
产量
['b', 'b', 'b', 'c', 'c'] Frequences {'c': 2, 'b': 3} Total b: 10, c: 2, a: 1