我有以下 Python pandas数据帧: fruits | numFruits---------------------0 | apples | 101 | grapes | 202 | figs | 15 我想要: apples | grapes | figs-----------------------------------------Market 1 Order | 10 | 20 | 15 我查看了
fruits | numFruits --------------------- 0 | apples | 10 1 | grapes | 20 2 | figs | 15
我想要:
apples | grapes | figs ----------------------------------------- Market 1 Order | 10 | 20 | 15
我查看了pivot(),pivot_table(),Transpose和unstack(),但似乎没有人给我这个.熊猫新手,所以所有的帮助赞赏.
到T
你需要
set_index
转置:
print (df.set_index('fruits').T) fruits apples grapes figs numFruits 10 20 15
如果需要重命名列,则有点复杂:
print (df.rename(columns={'numFruits':'Market 1 Order'}) .set_index('fruits') .rename_axis(None).T) apples grapes figs Market 1 Order 10 20 15
另一个更快的解决方案是使用numpy.ndarray.reshape
:
print (pd.DataFrame(df.numFruits.values.reshape(1,-1), index=['Market 1 Order'], columns=df.fruits.values)) apples grapes figs Market 1 Order 10 20 15
时序:
#[30000 rows x 2 columns] df = pd.concat([df]*10000).reset_index(drop=True) print (df) In [55]: %timeit (pd.DataFrame([df.numFruits.values], ['Market 1 Order'], df.fruits.values)) 1 loop, best of 3: 2.4 s per loop In [56]: %timeit (pd.DataFrame(df.numFruits.values.reshape(1,-1), index=['Market 1 Order'], columns=df.fruits.values)) The slowest run took 5.64 times longer than the fastest. This could mean that an intermediate result is being cached. 1000 loops, best of 3: 424 µs per loop In [57]: %timeit (df.rename(columns={'numFruits':'Market 1 Order'}).set_index('fruits').rename_axis(None).T) 100 loops, best of 3: 1.94 ms per loop