当前位置 : 主页 > 编程语言 > c++ >

线程的安全与不安全问题解答

来源:互联网 收集:自由互联 发布时间:2021-06-30
之所以解答这个问题,是因为想到了之前面试的时候的提问,翻看了不少的内容,找到了一篇很不错的解释,此内容来自于互联网,但是是我从万万多驳杂的内容中挖掘出来的,内容不错!欢迎学
之所以解答这个问题,是因为想到了之前面试的时候的提问,翻看了不少的内容,找到了一篇很不错的解释,此内容来自于互联网,但是是我从万万多驳杂的内容中挖掘出来的,内容不错!欢迎学习
*************不只是学习其内容,也让我更加懂得了为什么strust1是线程不安全的(原因是成员变量的锅)*************

当我们查看JDK API的时候,总会发现一些类说明写着,线程安全或者线程不安全,比如说StringBuilder中,有这么一句,“将StringBuilder 的实例用于多个线程是不安全的。如果需要这样的同步,则建议使用StringBuffer。 ”,那么下面手动创建一个线程不安全的类,然后在多线程中使用这个类,看看有什么效果。

public class Count {  
    private int num;  
    public void count() {  
        for(int i = 1; i <= 10; i++) {  
            num += i;  
        }  
        System.out.println(Thread.currentThread().getName() + "-" + num);  
    }  
}  
在这个类中的count方法是计算1一直加到10的和,并输出当前线程名和总和,我们期望的是每个线程都会输出55。

public class ThreadTest {  
    public static void main(String[] args) {  
        Runnable runnable = new Runnable() {  
            Count count = new Count();  
            public void run() {  
                count.count();  
            }  
        };  
        for(int i = 0; i < 10; i++) {  
            new Thread(runnable).start();  
        }  
    }  
}  
这里启动了10个线程,看一下输出结果:

Thread-0-55  
Thread-1-110  
Thread-2-165  
Thread-4-220  
Thread-5-275  
Thread-6-330  
Thread-3-385  
Thread-7-440  
Thread-8-495  
Thread-9-550  

只有Thread-0线程输出的结果是我们期望的,而输出的是每次都累加的,这里累加的原因以后的博文会说明,那么要想得到我们期望的结果,有几种解决方案:
1. 将Count中num变成count方法的局部变量;
 public class Count {  
    public void count() {  
        int num = 0;  
        for(int i = 1; i <= 10; i++) {  
            num += i;  
        }  
        System.out.println(Thread.currentThread().getName() + "-" + num);  
    }  
}  

2. 将线程类成员变量拿到run方法中;
public class ThreadTest4 {  
    public static void main(String[] args) {  
        Runnable runnable = new Runnable() {  
            public void run() {  
                Count count = new Count();  
                count.count();  
            }  
        };  
        for(int i = 0; i < 10; i++) {  
            new Thread(runnable).start();  
        }  
    }  
}   

3. 每次启动一个线程使用不同的线程类,不推荐。
  上述测试,我们发现,存在成员变量的类用于多线程时是不安全的,而变量定义在方法内是线程安全的。想想在使用struts1时,不推荐创建成员变量,因为action是单例的,如果创建了成员变量,就会存在线程不安全的隐患,而struts2是每一次请求都会创建一个action,就不用考虑线程安全的问题。
上篇通过一个简单的例子说明了线程安全与不安全,在例子中不安全的情况下输出的结果恰好是逐个递增的,为什么会产生这样的结果呢,因为建立的Count对象是线程共享的,一个线程改变了其成员变量num值,下一个线程正巧读到了修改后的num,所以会递增输出。
  要说明线程同步问题首先要说明Java线程的两个特性,可见性和有序性。多个线程之间是不能直接传递数据交互的,它们之间的交互只能通过共享变量来实现。拿上篇博文中的例子来说明,在多个线程之间共享了Count类的一个对象,这个对象是被创建在主内存(堆内存)中,每个线程都有自己的工作内存(线程栈),工作内存存储了主内存Count对象的一个副本,当线程操作Count对象时,首先从主内存复制Count对象到工作内存中,然后执行代码count.count(),改变了num值,最后用工作内存Count刷新主内存Count。当一个对象在多个内存中都存在副本时,如果一个内存修改了共享变量,其它线程也应该能够看到被修改后的值,此为可见性。由上述可知,一个运算赋值操作并不是一个原子性操作,多个线程执行时,CPU对线程的调度是随机的,我们不知道当前程序被执行到哪步就切换到了下一个线程,一个最经典的例子就是银行汇款问题,一个银行账户存款100,这时一个人从该账户取10元,同时另一个人向该账户汇10元,那么余额应该还是100。那么此时可能发生这种情况,A线程负责取款,B线程负责汇款,A从主内存读到100,B从主内存读到100,A执行减10操作,并将数据刷新到主内存,这时主内存数据100-10=90,而B内存执行加10操作,并将数据刷新到主内存,最后主内存数据100+10=110,显然这是一个严重的问题,我们要保证A线程和B线程有序执行,先取款后汇款或者先汇款后取款,此为有序性。
  下面同样用代码来展示一下线程同步问题。
TraditionalThreadSynchronized.java:创建两个线程,执行同一个对象的输出方法。
 
public class TraditionalThreadSynchronized {  
    public static void main(String[] args) {  
        final Outputter output = new Outputter();  
        new Thread() {  
            public void run() {  
                output.output("zhangsan");  
            };  
        }.start();        
        new Thread() {  
            public void run() {  
                output.output("lisi");  
            };  
        }.start();  
    }  
}  
class Outputter {  
    public void output(String name) {  
        // TODO 为了保证对name的输出不是一个原子操作,这里逐个输出name的每个字符  
        for(int i = 0; i < name.length(); i++) {  
            System.out.print(name.charAt(i));  
        }  
    }  
}  
运行结果:
zhlainsigsan  

  显然输出的字符串被打乱了,我们期望的输出结果是zhangsanlisi,这就是线程同步问题,我们希望output方法被一个线程完整的执行完之后在切换到下一个线程,Java中使用synchronized保证一段代码在多线程执行时是互斥的,有两种用法:
 
1. 使用synchronized将需要互斥的代码包含起来,并上一把锁。
synchronized (this) {  
    for(int i = 0; i < name.length(); i++) {  
        System.out.print(name.charAt(i));  
    }  
}  
这把锁必须是线程间的共享对象,像下面的代码是没有意义的。
 
Object lock = new Object();  
synchronized (lock) {  
    for(int i = 0; i < name.length(); i++) {  
        System.out.print(name.charAt(i));  
    }  
}  
每次进入output方法都会创建一个新的lock,这个锁显然每个线程都会创建,没有意义。
 
2. 将synchronized加在需要互斥的方法上。
public synchronized void output(String name) {  
    // TODO 线程输出方法  
    for(int i = 0; i < name.length(); i++) {  
        System.out.print(name.charAt(i));  
    }  
}  

这种方式就相当于用this锁住整个方法内的代码块,如果用synchronized加在静态方法上,就相当于用××××.class锁住整个方法内的代码块。使用synchronized在某些情况下会造成死锁,死锁问题以后会说明。
 
  每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列,就绪队列存储了将要获得锁的线程,阻塞队列存储了被阻塞的线程,当一个线程被唤醒(notify)后,才会进入到就绪队列,等待CPU的调度,反之,当一个线程被wait后,就会进入阻塞队列,等待下一次被唤醒,这个涉及到线程间的通信,下一篇博文会说明。看我们的例子,当第一个线程执行输出方法时,获得同步锁,执行输出方法,恰好此时第二个线程也要执行输出方法,但发现同步锁没有被释放,第二个线程就会进入就绪队列,等待锁被释放。一个线程执行互斥代码过程如下:
        1. 获得同步锁;
        2. 清空工作内存;
        3. 从主内存拷贝对象副本到工作内存;
        4. 执行代码(计算或者输出等);
        5. 刷新主内存数据;
        6. 释放同步锁。
所以,synchronized既保证了多线程的并发有序性,又保证了多线程的内存可见性。
volatile是第二种Java多线程同步的手段,根据JLS的说法,一个变量可以被volatile修饰,在这种情况下内存模型确保所有线程可以看到一致的变量值,来看一段代码:
class Test {  
    static int i = 0, j = 0;  
    static void one() {  
        i++;  
        j++;  
    }  
    static void two() {  
        System.out.println("i=" + i + " j=" + j);  
    }  
}  

一些线程执行one方法,另一些线程执行two方法,two方法有可能打印出j比i大的值,按照之前分析的线程执行过程分析一下:
 
        1. 将变量i从主内存拷贝到工作内存;
        2. 改变i的值;
        3. 刷新主内存数据;
        4. 将变量j从主内存拷贝到工作内存;
        5. 改变j的值;
        6. 刷新主内存数据;
这个时候执行two方法的线程先读取了主存i原来的值又读取了j改变后的值,这就导致了程序的输出不是我们预期的结果,那么可以在共享变量之前加上volatile。
 
class Test {  
    static volatile int i = 0, j = 0;  
    static void one() {  
        i++;  
        j++;  
    }  
    static void two() {  
        System.out.println("i=" + i + " j=" + j);  
    }  
}  
加上volatile可以将共享变量i和j的改变直接响应到主内存中,这样保证了i和j的值可以保持一致,然而我们不能保证执行two方法的线程是在i和j执行到什么程度获取到的,所以volatile可以保证内存可见性,不能保证并发有序性。
网友评论