当前位置 : 主页 > 数据库 > redis >

redis内存满了解决方法

来源:互联网 收集:自由互联 发布时间:2021-08-19
redis内存满了解决方法: 1,增加内存; 2,使用内存淘汰策略。 3,Redis集群。 下面我们就来重点介绍一下第2、3种解决方法: 第二种: 我们知道,redis设置配置文件的maxmemory参数,可

redis内存满了解决方法:

1,增加内存;

2,使用内存淘汰策略。

3,Redis集群。

下面我们就来重点介绍一下第2、3种解决方法:

第二种:

我们知道,redis设置配置文件的maxmemory参数,可以控制其最大可用内存大小(字节)。

那么当所需内存,超过maxmemory怎么办?

这个时候就该配置文件中的maxmemory-policy出场了。

其默认值是noeviction。

下面我将列出当可用内存不足时,删除redis键具有的淘汰规则。

1.jpg

LRU算法,least RecentlyUsed,最近最少使用算法。也就是说默认删除最近最少使用的键。

但是一定要注意一点!redis中并不会准确的删除所有键中最近最少使用的键,而是随机抽取3个键,删除这三个键中最近最少使用的键。

那么3这个数字也是可以设置的,对应位置是配置文件中的maxmeory-samples.

第三种方法:

Redis仅支持单实例,内存一般最多10~20GB。对于内存动辄100~200GB的系统,就需要通过集群来支持了。

Redis集群有三种方式:客户端分片、代理分片、RedisCluster

客户端分片

通过业务代码自己实现路由

优势:可以自己控制分片算法、性能比代理的好

劣势:维护成本高、扩容/缩容等运维操作都需要自己研发

代理分片

代理程序接收到来自业务程序的数据请求,根据路由规则,将这些请求分发给正确的Redis实例并返回给业务程序。使用类似Twemproxy、Codis等中间件实现。

优势:运维方便、程序不用关心如何链接Redis实例

劣势:会带来性能消耗(大概20%)、无法平滑扩容/缩容,需要执行脚本迁移数据,不方便(Codis在Twemproxy基础上优化并实现了预分片来达到Auto Rebalance)。

Redis Cluster

优势:官方集群解决方案、无中心节点,和客户端直连,性能较好

劣势:方案太重、无法平滑扩容/缩容,需要执行相应的脚本,不方便、太新,没有相应成熟的解决案例

更多redis知识请关注redis入门教程栏目。

以上就是redis内存满了解决方法的详细内容,更多请关注自由互联其它相关文章!

网友评论