目录 一、IoU的简介及原理解析 二、基于TensorFlow的IoU实现 一、IoU的简介及原理解析 IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算
目录
- 一、IoU的简介及原理解析
- 二、基于TensorFlow的IoU实现
一、IoU的简介及原理解析
IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。
开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。
为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况讨论,来计算交集。
上图就是你的直觉,这样想没有错。但计算一个交集,就要分多种情况讨论,要是程序真的按照这逻辑编写就太搞笑了。因此对这个问题进行进一步地研究显得十分有必要。
让我们重新思考一下两个框交集的计算。两个框交集的计算的实质是两个集合交集的计算,因此我们可以将两个框的交集的计算简化为:
通过简化,我们可以清晰地看到,交集计算的关键是交集上下界点(图中蓝点)的计算。
我们假设集合 A 为 [x1,x2],集合 B 为 [y1,y2]。然后我们来求AB交集的上下界限。
交集计算的逻辑
- 交集下界z1:max(x1,y1)
- 交集上界z2:min(x2,y2)
- 如果z2-z1小于0,则说明集合 A 和集合 B 没有交集。
下面使用Python来实现两个一维集合的 IoU 的计算:
def iou(set_a, set_b): ''' 一维 iou 的计算 ''' x1, x2 = set_a # (left, right) y1, y2 = set_b # (left, right) low = max(x1, y1) high = min(x2, y2) # intersection if high-low<0: inter = 0 else: inter = high-low # union union = (x2 - x1) + (y2 - y1) - inter # iou iou = inter / union return iou
上面,我们计算了两个一维集合的 iou,将上面的程序进行扩展,即可得到两个框 IoU 计算的程序。
def iou(box1, box2): ''' 两个框(二维)的 iou 计算 注意:边框以左上为原点 box:[top, left, bottom, right] ''' in_h = min(box1[2], box2[2]) - max(box1[0], box2[0]) in_w = min(box1[3], box2[3]) - max(box1[1], box2[1]) inter = 0 if in_h<0 or in_w<0 else in_h*in_w union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \ (box2[2] - box2[0]) * (box2[3] - box2[1]) - inter iou = inter / union return iou
二、基于TensorFlow的IoU实现
上节介绍了IoU,及其的计算,下面我们给出其在 TensorFlow 上的实现:
import tensorflow as tf def IoU_calculator(x, y, w, h, l_x, l_y, l_w, l_h): """calaulate IoU Args: x: net predicted x y: net predicted y w: net predicted width h: net predicted height l_x: label x l_y: label y l_w: label width l_h: label height Returns: IoU """ # convert to coner x_max = x + w/2 y_max = y + h/2 x_min = x - w/2 y_min = y - h/2 l_x_max = l_x + l_w/2 l_y_max = l_y + l_h/2 l_x_min = l_x - l_w/2 l_y_min = l_y - l_h/2 # calculate the inter inter_x_max = tf.minimum(x_max, l_x_max) inter_x_min = tf.maximum(x_min, l_x_min) inter_y_max = tf.minimum(y_max, l_y_max) inter_y_min = tf.maximum(y_min, l_y_min) inter_w = inter_x_max - inter_x_min inter_h = inter_y_max - inter_y_min inter = tf.cond(tf.logical_or(tf.less_equal(inter_w,0), tf.less_equal(inter_h,0)), lambda:tf.cast(0,tf.float32), lambda:tf.multiply(inter_w,inter_h)) # calculate the union union = w*h + l_w*l_h - inter IoU = inter / union return IoU
以上就是解析目标检测之IoU的详细内容,更多关于目标检测IoU的资料请关注易盾网络其它相关文章!