一、保存: graph_util.convert_variables_to_constants 可以把当前session的计算图串行化成一个字节流(二进制),这个函数包含三个参数:参数1:当前活动的session,它含有各变量 参数2:GraphD
一、保存:
graph_util.convert_variables_to_constants 可以把当前session的计算图串行化成一个字节流(二进制),这个函数包含三个参数:参数1:当前活动的session,它含有各变量
参数2:GraphDef 对象,它描述了计算网络
参数3:Graph图中需要输出的节点的名称的列表
返回值:精简版的GraphDef 对象,包含了原始输入GraphDef和session的网络和变量信息,它的成员函数SerializeToString()可以把这些信息串行化为字节流,然后写入文件里:
constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] ) with open( pbName, mode='wb') as f: f.write(constant_graph.SerializeToString())
需要指出的是,如果原始张量(包含在参数1和参数2中的组成部分)不参与参数3指定的输出节点列表所指定的张量计算的话,这些张量将不会存在返回的GraphDef对象里,也不会被串行化写入pb文件。
二、恢复:
恢复时,创建一个GraphDef,然后从上述的文件里加载进来,接着输入到当前的session:
graph0 = tf.GraphDef() with open( pbName, mode='rb') as f: graph0.ParseFromString( f.read() ) tf.import_graph_def( graph0 , name = '' )
三、代码:
import tensorflow as tf from tensorflow.python.framework import graph_util pbName = 'graphA.pb' def graphCreate() : with tf.Session() as sess : var1 = tf.placeholder ( tf.int32 , name='var1' ) var2 = tf.Variable( 20 , name='var2' )#实参name='var2'指定了操作名,该操作返回的张量名是在 #'var2'后面:0 ,即var2:0 是返回的张量名,也就是说变量 # var2的名称是'var2:0' var3 = tf.Variable( 30 , name='var3' ) var4 = tf.Variable( 40 , name='var4' ) var4op = tf.assign( var4 , 1000 , name = 'var4op1' ) sum = tf.Variable( 4, name='sum' ) sum = tf.add ( var1 , var2, name = 'var1_var2' ) sum = tf.add( sum , var3 , name='sum_var3' ) sumOps = tf.add( sum , var4 , name='sum_operation' ) oper = tf.get_default_graph().get_operations() with open( 'operation.csv','wt' ) as f: s = 'name,type,output\n' f.write( s ) for o in oper: s = o.name s += ','+ o.type inp = o.inputs oup = o.outputs for iip in inp : s #s += ','+ str(iip) for iop in oup : s += ',' + str(iop) s += '\n' f.write( s ) for var in tf.global_variables(): print('variable=> ' , var.name) #张量是tf.Variable/tf.Add之类操作的结果, #张量的名字使用操作名加:0来表示 init = tf.global_variables_initializer() sess.run( init ) sess.run( var4op ) print('sum_operation result is Tensor ' , sess.run( sumOps , feed_dict={var1:1}) ) constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] ) with open( pbName, mode='wb') as f: f.write(constant_graph.SerializeToString()) def graphGet() : print("start get:" ) with tf.Graph().as_default(): graph0 = tf.GraphDef() with open( pbName, mode='rb') as f: graph0.ParseFromString( f.read() ) tf.import_graph_def( graph0 , name = '' ) with tf.Session() as sess : init = tf.global_variables_initializer() sess.run(init) v1 = sess.graph.get_tensor_by_name('var1:0' ) v2 = sess.graph.get_tensor_by_name('var2:0' ) v3 = sess.graph.get_tensor_by_name('var3:0' ) v4 = sess.graph.get_tensor_by_name('var4:0' ) sumTensor = sess.graph.get_tensor_by_name("sum_operation:0") print('sumTensor is : ' , sumTensor ) print( sess.run( sumTensor , feed_dict={v1:1} ) ) graphCreate() graphGet()
四、保存pb函数代码里的操作名称/类型/返回的张量:
以上这篇Tensorflow 使用pb文件保存(恢复)模型计算图和参数实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持易盾网络。