安装 这里使用 Pip 来安装 Tensorflow CPU 版 $ sudo pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl 安装完成后运行库中自带的手写识别例子来检查安装是否
安装
这里使用 Pip 来安装 Tensorflow CPU 版
$ sudo pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl
安装完成后运行库中自带的手写识别例子来检查安装是否成功
$ cd /usr/lib/python2.7/site-packages/tensorflow/models/image/mnist $ python convolutional.py ...
或者运行
$ python -m tensorflow.models.image.mnist.convolutional ...
限制CPU个数
对于上面用到的手写识别例子来说,需要修改文件 /usr/lib/python2.7/site-
packages/tensorflow/models/image/mnist/convolutional.py 中创建 Session 部分
修改前 with tf.Session(config=config) as s: 修改后 cpu_num = int(os.environ.get('CPU_NUM', 1)) config = tf.ConfigProto(device_count={"CPU": cpu_num}, inter_op_parallelism_threads = cpu_num, intra_op_parallelism_threads = cpu_num, log_device_placement=True) with tf.Session(config=config) as s:
修改完成后,使用环境变量 CPU_NUM 来指定需要使用的 CPU 个数,然后再次运行手写识别例子
$ export CPU_NUM=2 $ python -m tensorflow.models.image.mnist.convolutional
运行后,使用 top 命令来查看程序的 CPU 使用情况。
以上这篇Tensorflow限制CPU个数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持易盾网络。