Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类
Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。本文假设你已经安装好了Tensorflow,了解过CNN的一些知识。
下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器
1. 准备训练样本
使用Python的库captcha来生成我们需要的训练样本,代码如下:
import sys import os import shutil import random import time #captcha是用于生成验证码图片的库,可以 pip install captcha 来安装它 from captcha.image import ImageCaptcha #用于生成验证码的字符集 CHAR_SET = ['0','1','2','3','4','5','6','7','8','9'] #字符集的长度 CHAR_SET_LEN = 10 #验证码的长度,每个验证码由4个数字组成 CAPTCHA_LEN = 4 #验证码图片的存放路径 CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' #用于模型测试的验证码图片的存放路径,它里面的验证码图片作为测试集 TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' #用于模型测试的验证码图片的个数,从生成的验证码图片中取出来放入测试集中 TEST_IMAGE_NUMBER = 50 #生成验证码图片,4位的十进制数字可以有10000种验证码 def generate_captcha_image(charSet = CHAR_SET, charSetLen=CHAR_SET_LEN, captchaImgPath=CAPTCHA_IMAGE_PATH): k = 0 total = 1 for i in range(CAPTCHA_LEN): total *= charSetLen for i in range(charSetLen): for j in range(charSetLen): for m in range(charSetLen): for n in range(charSetLen): captcha_text = charSet[i] + charSet[j] + charSet[m] + charSet[n] image = ImageCaptcha() image.write(captcha_text, captchaImgPath + captcha_text + '.jpg') k += 1 sys.stdout.write("\rCreating %d/%d" % (k, total)) sys.stdout.flush() #从验证码的图片集中取出一部分作为测试集,这些图片不参加训练,只用于模型的测试 def prepare_test_set(): fileNameList = [] for filePath in os.listdir(CAPTCHA_IMAGE_PATH): captcha_name = filePath.split('/')[-1] fileNameList.append(captcha_name) random.seed(time.time()) random.shuffle(fileNameList) for i in range(TEST_IMAGE_NUMBER): name = fileNameList[i] shutil.move(CAPTCHA_IMAGE_PATH + name, TEST_IMAGE_PATH + name) if __name__ == '__main__': generate_captcha_image(CHAR_SET, CHAR_SET_LEN, CAPTCHA_IMAGE_PATH) prepare_test_set() sys.stdout.write("\nFinished") sys.stdout.flush()
运行上面的代码,可以生成验证码图片,
生成的验证码图片如下图所示:
2. 构建CNN,训练分类器
代码如下:
import tensorflow as tf import numpy as np from PIL import Image import os import random import time #验证码图片的存放路径 CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' #验证码图片的宽度 CAPTCHA_IMAGE_WIDHT = 160 #验证码图片的高度 CAPTCHA_IMAGE_HEIGHT = 60 CHAR_SET_LEN = 10 CAPTCHA_LEN = 4 #60%的验证码图片放入训练集中 TRAIN_IMAGE_PERCENT = 0.6 #训练集,用于训练的验证码图片的文件名 TRAINING_IMAGE_NAME = [] #验证集,用于模型验证的验证码图片的文件名 VALIDATION_IMAGE_NAME = [] #存放训练好的模型的路径 MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' def get_image_file_name(imgPath=CAPTCHA_IMAGE_PATH): fileName = [] total = 0 for filePath in os.listdir(imgPath): captcha_name = filePath.split('/')[-1] fileName.append(captcha_name) total += 1 return fileName, total #将验证码转换为训练时用的标签向量,维数是 40 #例如,如果验证码是 ‘0296' ,则对应的标签是 # [1 0 0 0 0 0 0 0 0 0 # 0 0 1 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 0 0 1 # 0 0 0 0 0 0 1 0 0 0] def name2label(name): label = np.zeros(CAPTCHA_LEN * CHAR_SET_LEN) for i, c in enumerate(name): idx = i*CHAR_SET_LEN + ord(c) - ord('0') label[idx] = 1 return label #取得验证码图片的数据以及它的标签 def get_data_and_label(fileName, filePath=CAPTCHA_IMAGE_PATH): pathName = os.path.join(filePath, fileName) img = Image.open(pathName) #转为灰度图 img = img.convert("L") image_array = np.array(img) image_data = image_array.flatten()/255 image_label = name2label(fileName[0:CAPTCHA_LEN]) return image_data, image_label #生成一个训练batch def get_next_batch(batchSize=32, trainOrTest='train', step=0): batch_data = np.zeros([batchSize, CAPTCHA_IMAGE_WIDHT*CAPTCHA_IMAGE_HEIGHT]) batch_label = np.zeros([batchSize, CAPTCHA_LEN * CHAR_SET_LEN]) fileNameList = TRAINING_IMAGE_NAME if trainOrTest == 'validate': fileNameList = VALIDATION_IMAGE_NAME totalNumber = len(fileNameList) indexStart = step*batchSize for i in range(batchSize): index = (i + indexStart) % totalNumber name = fileNameList[index] img_data, img_label = get_data_and_label(name) batch_data[i, : ] = img_data batch_label[i, : ] = img_label return batch_data, batch_label #构建卷积神经网络并训练 def train_data_with_CNN(): #初始化权值 def weight_variable(shape, name='weight'): init = tf.truncated_normal(shape, stddev=0.1) var = tf.Variable(initial_value=init, name=name) return var #初始化偏置 def bias_variable(shape, name='bias'): init = tf.constant(0.1, shape=shape) var = tf.Variable(init, name=name) return var #卷积 def conv2d(x, W, name='conv2d'): return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME', name=name) #池化 def max_pool_2X2(x, name='maxpool'): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name=name) #输入层 #请注意 X 的 name,在测试model时会用到它 X = tf.placeholder(tf.float32, [None, CAPTCHA_IMAGE_WIDHT * CAPTCHA_IMAGE_HEIGHT], name='data-input') Y = tf.placeholder(tf.float32, [None, CAPTCHA_LEN * CHAR_SET_LEN], name='label-input') x_input = tf.reshape(X, [-1, CAPTCHA_IMAGE_HEIGHT, CAPTCHA_IMAGE_WIDHT, 1], name='x-input') #dropout,防止过拟合 #请注意 keep_prob 的 name,在测试model时会用到它 keep_prob = tf.placeholder(tf.float32, name='keep-prob') #第一层卷积 W_conv1 = weight_variable([5,5,1,32], 'W_conv1') B_conv1 = bias_variable([32], 'B_conv1') conv1 = tf.nn.relu(conv2d(x_input, W_conv1, 'conv1') + B_conv1) conv1 = max_pool_2X2(conv1, 'conv1-pool') conv1 = tf.nn.dropout(conv1, keep_prob) #第二层卷积 W_conv2 = weight_variable([5,5,32,64], 'W_conv2') B_conv2 = bias_variable([64], 'B_conv2') conv2 = tf.nn.relu(conv2d(conv1, W_conv2,'conv2') + B_conv2) conv2 = max_pool_2X2(conv2, 'conv2-pool') conv2 = tf.nn.dropout(conv2, keep_prob) #第三层卷积 W_conv3 = weight_variable([5,5,64,64], 'W_conv3') B_conv3 = bias_variable([64], 'B_conv3') conv3 = tf.nn.relu(conv2d(conv2, W_conv3, 'conv3') + B_conv3) conv3 = max_pool_2X2(conv3, 'conv3-pool') conv3 = tf.nn.dropout(conv3, keep_prob) #全链接层 #每次池化后,图片的宽度和高度均缩小为原来的一半,进过上面的三次池化,宽度和高度均缩小8倍 W_fc1 = weight_variable([20*8*64, 1024], 'W_fc1') B_fc1 = bias_variable([1024], 'B_fc1') fc1 = tf.reshape(conv3, [-1, 20*8*64]) fc1 = tf.nn.relu(tf.add(tf.matmul(fc1, W_fc1), B_fc1)) fc1 = tf.nn.dropout(fc1, keep_prob) #输出层 W_fc2 = weight_variable([1024, CAPTCHA_LEN * CHAR_SET_LEN], 'W_fc2') B_fc2 = bias_variable([CAPTCHA_LEN * CHAR_SET_LEN], 'B_fc2') output = tf.add(tf.matmul(fc1, W_fc2), B_fc2, 'output') loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output)) optimizer = tf.train.AdamOptimizer(0.001).minimize(loss) predict = tf.reshape(output, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='predict') labels = tf.reshape(Y, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='labels') #预测结果 #请注意 predict_max_idx 的 name,在测试model时会用到它 predict_max_idx = tf.argmax(predict, axis=2, name='predict_max_idx') labels_max_idx = tf.argmax(labels, axis=2, name='labels_max_idx') predict_correct_vec = tf.equal(predict_max_idx, labels_max_idx) accuracy = tf.reduce_mean(tf.cast(predict_correct_vec, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) steps = 0 for epoch in range(6000): train_data, train_label = get_next_batch(64, 'train', steps) sess.run(optimizer, feed_dict={X : train_data, Y : train_label, keep_prob:0.75}) if steps % 100 == 0: test_data, test_label = get_next_batch(100, 'validate', steps) acc = sess.run(accuracy, feed_dict={X : test_data, Y : test_label, keep_prob:1.0}) print("steps=%d, accuracy=%f" % (steps, acc)) if acc > 0.99: saver.save(sess, MODEL_SAVE_PATH+"crack_captcha.model", global_step=steps) break steps += 1 if __name__ == '__main__': image_filename_list, total = get_image_file_name(CAPTCHA_IMAGE_PATH) random.seed(time.time()) #打乱顺序 random.shuffle(image_filename_list) trainImageNumber = int(total * TRAIN_IMAGE_PERCENT) #分成测试集 TRAINING_IMAGE_NAME = image_filename_list[ : trainImageNumber] #和验证集 VALIDATION_IMAGE_NAME = image_filename_list[trainImageNumber : ] train_data_with_CNN() print('Training finished')
运行上面的代码,开始训练,训练要花些时间,如果没有GPU的话,会慢些,
训练完后,输出如下结果,经过4100次的迭代,训练出来的分类器模型在验证集上识别的准确率为99.5%
生成的模型文件如下,在模型测试时将用到这些文件
3. 测试模型
编写代码,对训练出来的模型进行测试
import tensorflow as tf import numpy as np from PIL import Image import os import matplotlib.pyplot as plt CAPTCHA_LEN = 4 MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' def get_image_data_and_name(fileName, filePath=TEST_IMAGE_PATH): pathName = os.path.join(filePath, fileName) img = Image.open(pathName) #转为灰度图 img = img.convert("L") image_array = np.array(img) image_data = image_array.flatten()/255 image_name = fileName[0:CAPTCHA_LEN] return image_data, image_name def digitalStr2Array(digitalStr): digitalList = [] for c in digitalStr: digitalList.append(ord(c) - ord('0')) return np.array(digitalList) def model_test(): nameList = [] for pathName in os.listdir(TEST_IMAGE_PATH): nameList.append(pathName.split('/')[-1]) totalNumber = len(nameList) #加载graph saver = tf.train.import_meta_graph(MODEL_SAVE_PATH+"crack_captcha.model-4100.meta") graph = tf.get_default_graph() #从graph取得 tensor,他们的name是在构建graph时定义的(查看上面第2步里的代码) input_holder = graph.get_tensor_by_name("data-input:0") keep_prob_holder = graph.get_tensor_by_name("keep-prob:0") predict_max_idx = graph.get_tensor_by_name("predict_max_idx:0") with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(MODEL_SAVE_PATH)) count = 0 for fileName in nameList: img_data, img_name = get_image_data_and_name(fileName, TEST_IMAGE_PATH) predict = sess.run(predict_max_idx, feed_dict={input_holder:[img_data], keep_prob_holder : 1.0}) filePathName = TEST_IMAGE_PATH + fileName print(filePathName) img = Image.open(filePathName) plt.imshow(img) plt.axis('off') plt.show() predictValue = np.squeeze(predict) rightValue = digitalStr2Array(img_name) if np.array_equal(predictValue, rightValue): result = '正确' count += 1 else: result = '错误' print('实际值:{}, 预测值:{},测试结果:{}'.format(rightValue, predictValue, result)) print('\n') print('正确率:%.2f%%(%d/%d)' % (count*100/totalNumber, count, totalNumber)) if __name__ == '__main__': model_test()
对模型的测试结果如下,在测试集上识别的准确率为 94%
下面是两个识别错误的验证码
以上这篇利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持易盾网络。