每个神经元都必须有激活函数。它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性。该函数取所有输入的加权和,进而生成一个输出信号。你可以把它看作输入和输出之间
如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:
这里,g 表示激活函数。激活函数的参数 ΣWjxj+b 被称为神经元的活动。
这里对给定输入刺激的反应是由神经元的激活函数决定的。有时回答是二元的(是或不是)。例如,当有人开玩笑的时候...要么不笑。在其他时候,反应似乎是线性的,例如,由于疼痛而哭泣。有时,答复似乎是在一个范围内。
模仿类似的行为,人造神经元使用许多不同的激活函数。在这里,你将学习如何定义和使用 TensorFlow 中的一些常用激活函数。
下面认识几种常见的激活函数:
-
阈值激活函数:这是最简单的激活函数。在这里,如果神经元的激活值大于零,那么神经元就会被激活;否则,它还是处于抑制状态。下面绘制阈值激活函数的图,随着神经元的激活值的改变在 TensorFlow 中实现阈值激活函数:
上述代码的输出如下图所示:
-
Sigmoid 激活函数:在这种情况下,神经元的输出由函数 g(x)=1/(1+exp(-x)) 确定。在 TensorFlow 中,方法是 tf.sigmoid,它提供了 Sigmoid 激活函数。这个函数的范围在 0 到 1 之间:
在形状上,它看起来像字母 S,因此名字叫 Sigmoid:
-
双曲正切激活函数:在数学上,它表示为 (1-exp(-2x)/(1+exp(-2x)))。在形状上,它类似于 Sigmoid 函数,但是它的中心位置是 0,其范围是从 -1 到 1。TensorFlow 有一个内置函数 tf.tanh,用来实现双曲正切激活函数:
以下是上述代码的输出:
-
线性激活函数:在这种情况下,神经元的输出与神经元的输入值相同。这个函数的任何一边都不受限制:
-
整流线性单元(ReLU)激活函数也被内置在 TensorFlow 库中。这个激活函数类似于线性激活函数,但有一个大的改变:对于负的输入值,神经元不会激活(输出为零),对于正的输入值,神经元的输出与输入值相同:
以下是 ReLU 激活函数的输出:
-
Softmax 激活函数是一个归一化的指数函数。一个神经元的输出不仅取决于其自身的输入值,还取决于该层中存在的所有其他神经元的输入的总和。这样做的一个优点是使得神经元的输出小,因此梯度不会过大。数学表达式为 yi =exp(xi)/Σjexp(xj):
以下是上述代码的输出:
- 阈值激活函数用于 McCulloch Pitts 神经元和原始的感知机。这是不可微的,在 x=0 时是不连续的。因此,使用这个激活函数来进行基于梯度下降或其变体的训练是不可能的。
- Sigmoid 激活函数一度很受欢迎,从曲线来看,它像一个连续版的阈值激活函数。它受到梯度消失问题的困扰,即函数的梯度在两个边缘附近变为零。这使得训练和优化变得困难。
- 双曲正切激活函数在形状上也是 S 形并具有非线性特性。该函数以 0 为中心,与 Sigmoid 函数相比具有更陡峭的导数。与 Sigmoid 函数一样,它也受到梯度消失问题的影响。
- 线性激活函数是线性的。该函数是双边都趋于无穷的 [-inf,inf]。它的线性是主要问题。线性函数之和是线性函数,线性函数的线性函数也是线性函数。因此,使用这个函数,不能表示复杂数据集中存在的非线性。
-
ReLU 激活函数是线性激活功能的整流版本,这种整流功能允许其用于多层时捕获非线性。
使用 ReLU 的主要优点之一是导致稀疏激活。在任何时刻,所有神经元的负的输入值都不会激活神经元。就计算量来说,这使得网络在计算方面更轻便。
ReLU 神经元存在死亡 ReLU 的问题,也就是说,那些没有激活的神经元的梯度为零,因此将无法进行任何训练,并停留在死亡状态。尽管存在这个问题,但 ReLU 仍是隐藏层最常用的激活函数之一。 - Softmax 激活函数被广泛用作输出层的激活函数,该函数的范围是 [0,1]。在多类分类问题中,它被用来表示一个类的概率。所有单位输出和总是 1。
总结
神经网络已被用于各种任务。这些任务可以大致分为两类:函数逼近(回归)和分类。根据手头的任务,一个激活函数可能比另一个更好。一般来说,隐藏层最好使用 ReLU 神经元。对于分类任务,Softmax 通常是更好的选择;对于回归问题,最好使用 Sigmoid 函数或双曲正切函数。推荐阅读
- https://www.tensorflow.org/versions/r0.12/api_docs/python/nn/activation_functions提供了在 TensorFlow 中定义的激活函数的详细信息以及如何使用它们。
- https://en.wikipedia.org/wiki/Activation_function是对激活函数的一个很好的总结。