上代码: #coding=utf-8import cv2import dlibpath = "imagePath/9.jpg"img = cv2.imread(path)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#人脸分类器detector = dlib.get_frontal_face_detector()# 获取人脸检测器predictor = dlib.shap
上代码:
#coding=utf-8 import cv2 import dlib path = "imagePath/9.jpg" img = cv2.imread(path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #人脸分类器 detector = dlib.get_frontal_face_detector() # 获取人脸检测器 predictor = dlib.shape_predictor( "shape_predictor_68_face_landmarks.dat" ) color = (0, 255, 0) # 定义绘制颜色 dets = detector(gray, 1) for face in dets: shape = predictor(img, face) # 寻找人脸的68个标定点 chang=[] kuan= [] # 遍历所有点,打印出其坐标,并圈出来 for pt in shape.parts(): pt_pos = (pt.x, pt.y) chang.append(pt.x) kuan.append(pt.y) #cv2.circle(img, pt_pos, 1, (0, 255, 0), 1) x1 = max(chang) x2 = min(chang) y1 = max(kuan) y2 = min(kuan) cv2.rectangle(img, (x2, y2), (x1, y1), color, 1) cropped = img[y2 + 1:y1, x2 + 1:x1] # 裁剪坐标为[y0:y1, x0:x1] cv2.imshow("image", cropped) k = cv2.waitKey(0) if k == ord("s"): cv2.imwrite("imagePath/9-7.png", cropped) cv2.destroyAllWindows()
识别效果:
以上就是Python用dilb提取照片上人脸的示例的详细内容,更多关于python 提取人脸的资料请关注易盾网络其它相关文章!