pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn)# 递归的调用weights_init函数,遍历nn.Module的submodule作为参数# 常用来对模型的参数进行初始化
pytorch中的权值初始化
官方论坛对weight-initilzation的讨论
torch.nn.Module.apply(fn)
torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module -> None) – function to be applied to each submodule # Returns: self # Return type: Module 例子: def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) # m.weight.data是卷积核参数, m.bias.data是偏置项参数 elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) netG = _netG(ngpu) # 生成模型实例 netG.apply(weights_init) # 递归的调用weights_init函数,遍历netG的submodule作为参数
#-*-coding:utf-8-*- import torch from torch.autograd import Variable # 对模型参数进行初始化 # 官方论坛链接:https://discuss.pytorch.org/t/weight-initilzation/157/3 # 方法一 # 单独定义一个weights_init函数,输入参数是m(torch.nn.module或者自己定义的继承nn.module的子类) # 然后使用net.apply()进行参数初始化 # m.__class__.__name__ 获得nn.module的名字 # https://github.com/pytorch/examples/blob/master/dcgan/main.py#L90-L96 def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) netG = _netG(ngpu) # 生成模型实例 netG.apply(weights_init) # 递归的调用weights_init函数,遍历netG的submodule作为参数 # function to be applied to each submodule # 方法二 # 1. 使用net.modules()遍历模型中的网络层的类型 2. 对其中的m层的weigth.data(tensor)部分进行初始化操作 # Another initialization example from PyTorch Vision resnet implementation. # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L112-L118 class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) # 权值参数初始化 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # 方法三 # 自己知道网络中参数的顺序和类型, 然后将参数依次读取出来,调用torch.nn.init中的方法进行初始化 net = AlexNet(2) params = list(net.parameters()) # params依次为Conv2d参数和Bias参数 # 或者 conv1Params = list(net.conv1.parameters()) # 其中,conv1Params[0]表示卷积核参数, conv1Params[1]表示bias项参数 # 然后使用torch.nn.init中函数进行初始化 torch.nn.init.normal(tensor, mean=0, std=1) torch.nn.init.constant(tensor, 0) # net.modules()迭代的返回: AlexNet,Sequential,Conv2d,ReLU,MaxPool2d,LRN,AvgPool3d....,Conv2d,...,Conv2d,...,Linear, # 这里,只有Conv2d和Linear才有参数 # net.children()只返回实际存在的子模块: Sequential,Sequential,Sequential,Sequential,Sequential,Sequential,Sequential,Linear # 附AlexNet的定义 class AlexNet(nn.Module): def __init__(self, num_classes = 2): # 默认为两类,猫和狗 # super().__init__() # python3 super(AlexNet, self).__init__() # 开始构建AlexNet网络模型,5层卷积,3层全连接层 # 5层卷积层 self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=96, kernel_size=11, stride=4), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), LRN(local_size=5, bias=1, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, groups=2, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), LRN(local_size=5, bias=1, alpha=1e-4, beta=0.75, ACROSS_CHANNELS=True) ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) self.conv4 = nn.Sequential( nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) self.conv5 = nn.Sequential( nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2) ) # 3层全连接层 # 前向计算的时候,最开始输入需要进行view操作,将3D的tensor变为1D self.fc6 = nn.Sequential( nn.Linear(in_features=6*6*256, out_features=4096), nn.ReLU(inplace=True), nn.Dropout() ) self.fc7 = nn.Sequential( nn.Linear(in_features=4096, out_features=4096), nn.ReLU(inplace=True), nn.Dropout() ) self.fc8 = nn.Linear(in_features=4096, out_features=num_classes) def forward(self, x): x = self.conv5(self.conv4(self.conv3(self.conv2(self.conv1(x))))) x = x.view(-1, 6*6*256) x = self.fc8(self.fc7(self.fc6(x))) return x
补充知识:pytorch Load部分weights
我们从网上down下来的模型与我们的模型可能就存在一个层的差异,此时我们就需要重新训练所有的参数是不合理的。
因此我们可以加载相同的参数,而忽略不同的参数,代码如下:
pretrained_dict = torch.load(“model.pth”) model_dict = et.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) net.load_state_dict(model_dict)
以上这篇pytorch中的weight-initilzation用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持易盾网络。