当前位置 : 主页 > 手机开发 > 其它 >

长链剖分

来源:互联网 收集:自由互联 发布时间:2021-06-19
类似于重链剖分,我们将一棵树分成多条重链。 对于每个点,其重儿子(也可以称为长儿子)是到叶子节点距离最远的点。 然后类似于静态链分治,我们在计算某个点的答案时先计算

类似于重链剖分,我们将一棵树分成多条重链。
对于每个点,其重儿子(也可以称为长儿子)是到叶子节点距离最远的点。
然后类似于静态链分治,我们在计算某个点的答案时先计算重儿子,然后直接继承重儿子答案,再暴力合并轻儿子答案。
为了实现空间与时间复杂的的降低,我们需要用指针来实现。
长链剖分的时间复杂度为\(O(n)\)
考虑每条重链,仅会在其链顶被暴力合并一次、
而重链的长度总和为\(O(n)\)
所以复杂度为\(O(n)\)
例题:CF1009F Dominant Indices
首先这题有一个非常显然的\(dp\)
\(f_{u,i}\)\(u\)的子树中深度为\(i\)的点的个数,\(S_u\)\(u\)的子树。
那么\(f_{u,0}=1,f_{u,i}=\sum\limits_{v\in S_u}f_{v,i-1}\)
然后我们考虑长链剖分,并且把\(f\)开成指针数组。
对于重儿子,我们直接指针赋一下值,答案加个一即可。
对于轻儿子,我们暴力合并。
实现过程中,我们开一个长度为\(n\)的tmp\(数组,每条长链分配\)len_u\((\)u$是这条长链的顶点)的空间,具体用指针实现。

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
namespace IO
{
    char ibuf[(1<<21)+1],obuf[(1<<21)+1],st[15],*iS,*iT,*oS=obuf,*oT=obuf+(1<<21);
    char Get(){return (iS==iT? (iT=(iS=ibuf)+fread(ibuf,1,(1<<21)+1,stdin),(iS==iT? EOF:*iS++)):*iS++);}
    void Flush(){fwrite(obuf,1,oS-obuf,stdout),oS=obuf;}
    void Put(char x){*oS++=x;if(oS==oT)Flush();}
    int read(){int x=0;char ch=Get();while(ch>57||ch<48)ch=Get();while(ch>=48&&ch<=57)x=x*10+(ch^48),ch=Get();return x;}
    void write(int x){int top=0;if(!x)Put('0');while(x)st[++top]=(x%10)+48,x/=10;while(top)Put(st[top--]);Put('\n');}
}
using namespace IO;
const int N=1000007;
vector<int>G[N];
int len[N],son[N],t[N],*f[N],*id=t,ans[N],n;
void dfs(int u,int fa)
{
    for(int v:G[u]) if(v^fa) dfs(v,u),son[u]=len[v]>len[son[u]]? v:son[u];
    len[u]=len[son[u]]+1;
}
void dp(int u,int fa)
{
    f[u][0]=1;
    if(son[u]) f[son[u]]=f[u]+1,dp(son[u],u),ans[u]=ans[son[u]]+1;
    for(int v:G[u])
    {
        if(v==fa||v==son[u]) continue;
        f[v]=id,id+=len[v],dp(v,u);
        for(int j=1;j<=len[v];++j)
    {
            f[u][j]+=f[v][j-1];
            if((j<ans[u]&&f[u][j]>=f[u][ans[u]])||(j>ans[u]&&f[u][j]>f[u][ans[u]])) ans[u]=j;
        }
    }
    if(f[u][ans[u]]==1) ans[u]=0;
}
int main()
{
    n=read();int i,u,v;
    for(i=1;i<n;++i) u=read(),v=read(),G[u].pb(v),G[v].pb(u);
    dfs(1,0),f[1]=id,id+=len[1],dp(1,0);
    for(i=1;i<=n;++i) write(ans[i]);
    return Flush(),0;
}
网友评论