我正在关注软件基金会这本书,我在名为“Imp”的章节. 作者公开了一种小语言,如下所示: Inductive aexp : Type := | ANum : nat - aexp | APlus : aexp - aexp - aexp | AMinus : aexp - aexp - aexp | AMult : aexp -
作者公开了一种小语言,如下所示:
Inductive aexp : Type := | ANum : nat -> aexp | APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult : aexp -> aexp -> aexp.
以下是评估这些表达式的函数:
Fixpoint aeval (a : aexp) : nat := match a with | ANum n ⇒ n | APlus a1 a2 ⇒ (aeval a1) + (aeval a2) | AMinus a1 a2 ⇒ (aeval a1) - (aeval a2) | AMult a1 a2 ⇒ (aeval a1) × (aeval a2) end.
练习是创建一个优化评估的功能.例如 :
APlus a (ANum 0) --> a
这里有我的优化功能:
Fixpoint optimizer_a (a:aexp) :aexp := match a with | ANum n => ANum n | APlus (ANum 0) e2 => optimizer_a e2 | APlus e1 (ANum 0) => optimizer_a e1 | APlus e1 e2 => APlus (optimizer_a e1) (optimizer_a e2) | AMinus e1 (ANum 0) => optimizer_a e1 | AMinus e1 e2 => AMinus (optimizer_a e1) (optimizer_a e2) | AMult (ANum 1) e2 => optimizer_a e2 | AMult e1 (ANum 1) => optimizer_a e1 | AMult e1 e2 => AMult (optimizer_a e1) (optimizer_a e2) end.
而现在,我会证明优化功能是合理的:
Theorem optimizer_a_sound : forall a, aeval (optimizer_a a) = aeval a.
这个证明非常困难.所以我尝试用一些引理来分解证明.
这是一个引理:
Lemma optimizer_a_plus_sound : forall a b, aeval (optimizer_a (APlus a b)) = aeval (APlus (optimizer_a a) (optimizer_a b)).
我有证据,但很无聊.我在a上进行归纳然后,对于每种情况,我都会破坏b并破坏exp以处理b为0时的情况.
我需要这样做,因为
n+0 = n
不会自动减少,我们需要一个plus_0_r定理.
现在,我想知道,我怎么能用Coq建立一个更好的证据,以避免在证明过程中出现一些无聊的重复.
以下是我对这个引理的证明:
http://pastebin.com/pB76JFGv
我想我应该使用“Hint Rewrite plus_0_r”,但我不知道怎么做.
顺便说一句,我也有兴趣知道一些提示,以显示初始定理(我的优化函数的响度).
如果你使用上面的技术,你可以定义自己的战术,所以你不必输入那么多.由于证据很短,你可以没有引理. (我称之为destruct-congruence-auto的战术dca.)较短的证据不具有可读性,但它本质上是:考虑变量的情况.
Lemma ANum0_dec: forall a, {a = ANum 0} + { a <> ANum 0}. destruct a; try destruct n; try (right; discriminate); left; auto. Qed. Require Import Arith. Ltac dca v := destruct v; try congruence; auto. Lemma optimizer_a_plus_sound : forall a b, aeval (optimizer_a (APlus a b)) = aeval (APlus (optimizer_a a) (optimizer_a b)). Proof. intros a b; destruct (ANum0_dec a), (ANum0_dec b). - dca a; dca n. - dca a; dca n0. - dca b; dca n0; dca a; simpl; auto with arith; dca n0. - dca a; dca b; dca n1; dca n2. Qed.
然后使用它
Theorem optimizer_a_sound : forall a, aeval (optimizer_a a) = aeval a. induction a. * auto. * rewrite optimizer_a_plus_sound; simpl; auto. * (* ... and so on for Minus and Mult *)
你也可以用这种紧凑的形式做完整的证明.