当前位置 : 主页 > 网络安全 > 测试自动化 >

使用 JsonPath 完成接口自动化测试中参数关联和数据验证(Python语言)

来源:互联网 收集:自由互联 发布时间:2021-06-19
背景: 接口自动化测试实现简单、成本较低、收益较高,越来越受到企业重视 restful风格的api设计大行其道 json成为主流的轻量级数据交换格式 痛点: 接口关联 也称为关联参数。在应

背景:

  1. 接口自动化测试实现简单、成本较低、收益较高,越来越受到企业重视
  2. restful风格的api设计大行其道
  3. json成为主流的轻量级数据交换格式

痛点:

  1. 接口关联
    • 也称为关联参数。在应用业务接口中,完成一个业务功能时,有时候一个接口可能不满足业务的整个流程逻辑,需要多个接口配合使用,简单的案例如:B接口的成功调用依赖于A接口,需要在A接口的响应数据(response)中拿到需要的字段,在调用B接口的时候,传递给B接口作为B接口请求参数,拿到后续响应的响应数据。
    • 接口关联通常可以使用正则表达式去提取需要的数据,但对于json这种简洁、清晰层次结构、轻量级的数据交互格式,使用正则未免有点杀鸡用牛刀的感觉(是的,因为我不擅长写正则表达式),我们需要更加简单、直接的提取json数据的方式。
  2. 数据验证
    • 这里的数据验证指的是对响应结果进行数据的校验
    • 接口自动化测试中,对于简单的响应结果(json),可以直接和期望结果进行比对,判断是否完全相等即可。如 json {"status":1,"msg":"登录成功"}
    • 对于格式较复杂,尤其部分数据存在不确定性、会根据实际情况变化的响应结果,简单的判断是否完全相等(断言)通常会失败。如: json {"status":1,"code":"10001","data":[{"id":1,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"1","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-05-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":2,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"2","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-06-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":3,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"3","unfinishedInterest":"1.0","unfinishedPrincipal":"100.00","repaymentDate":"2018-07-27 12:24:01","actualRepaymentDate":null,"status":"0"}],"msg":"获取信息成功"}上面的json结构嵌套了很多信息,完整的匹配几乎不可能成功。比如其中的createTime信息,根据执行接口测试用例的时间每次都不一样。同时这个时间是响应结果中较为次要的信息,在进行接口自动化测试时,是可以选择被忽略的。
    • 我们需要某种简单的方法,能够从json中提取出我们真正关注的信息(通常也被称为关键信息)。如提取出status的值为1,data数组中每个对象的investId都为1,data中第三个对象的unfinishedPrincipal值为100.00,只要这三个关键信息校验通过,我们就认为响应结果没有问题。

解决方案

JsonPath可以完美解决上面的痛点。通过JsonPath可以从多层嵌套的Json中解析出所需要的值。

JsonPath

  • JsonPath参照XPath解析xml的方式来解析Json
  • JsonPath用符号$表示最外层对象,类似于Xpath中的根元素
  • JsonPath可以通过点语法来检索数据,如: shell $.store.book[0].title
  • 也可以使用中括号[]的形式,如 shell $[‘store‘][‘book‘][0][‘title‘]

运算符(Operators)

运算符 说明 $ 根元素 @ 当前元素 * 通配符,可以表示任何元素 .. 递归搜索 . 子节点(元素) [‘‘ (, ‘‘)] 一个或者多个子节点 [ (, )] 一个或者多个数组下标 [start:end] 数组片段,区间为[start,end) [?()] 过滤器表达式,其中表达式结果必须是boolean类型,如可以是比较表达式或者逻辑表达式

JsonPath案例

json

{"lemon":{"teachers":[{"id":"101","name":"华华","addr":"湖南长沙","age":25},{"id":"102","name":"韬哥","age":28},{"id":"103","name":"Happy","addr":"广东深圳","age":16},{"id":"104","name":"歪歪","addr":"广东广州","age":29}],"salesmans":[{"id":"105","name":"毛毛","age":17},{"id":"106","name":"大树","age":27}]},"avg":25}

JsonPath例子及说明

JsonPath 路径说明 $.lemon.teachers[*].name 获取所有老师的的名称 $..name 获取所有人的名称 $.lemon.* 所有的老师和销售 $.lemon..age 所有人的年龄 $..age 所有人的年龄 $.lemon.teachers[*].age 所有老师的年龄 $.lemon.teachers[3] 索引为3(第4个)老师的信息 $..teachers[3] 索引为3(第4个)老师的信息 $.lemon.teachers[-2] 倒数第2个老师的信息 $..teachers[-2] 倒数第2个老师的信息 $..teachers[1,2] 第2到第3个老师的信息 $..teachers[:2] 索引0(包含)到索引2(不包含)的老师信息 $..teachers[1:3] 索引1(包含)到索引3(不包含)的老师信息 $..teachers[-2:] 最后的两个老师的信息 $..teachers[2:] 索引2开始的所有老师信息 $..teachers[?(@.addr)] 所有包含地址的老师信息(jsonpath_rw不支持) $.lemon.teachers[?(@.age < 20)] 所有年龄小于20的年龄信息(jsonpath_rw不支持)

一:使用jsonpath

安装jsonpath模块

pip install jsonpath==0.75

解析

# 1:导入相关模块
import json
import jsonpath

# 2: 准备json字符串
jsonStr = ‘‘‘ { "lemon": { "teachers": [ { "id": "101", "name": "华华", "addr": "湖南长沙", "age": 25 }, { "id": "102", "name": "韬哥", "age": 28 }, { "id": "103", "name": "Happy", "addr": "广东深圳", "age": 16 }, { "id": "104", "name": "歪歪", "addr": "广东广州", "age": 29 } ], "salesmans": [ { "id": "105", "name": "毛毛", "age": 17 }, { "id": "106", "name": "大树", "age": 27 } ] }, "avg": 25 } ‘‘‘

# 3:加载json字符串为json对象
json_obj = json.loads(jsonStr)

# 4:使用jsonpath模块的jsonpath方法提取信息
# eg1: 提取所有包含addr属性的老师信息,结果为list类型
results = jsonpath.jsonpath(json_obj,"$..teachers[?(@.addr)]")  
print(results)
# 输出结果:[{‘id‘: ‘101‘, ‘name‘: ‘华华‘, ‘addr‘: ‘湖南长沙‘, ‘age‘: 25}, {‘id‘: ‘103‘, ‘name‘: ‘Happy‘, ‘addr‘: ‘广东深圳‘, ‘age‘: 16}, {‘id‘: ‘104‘, ‘name‘: ‘歪歪‘, ‘addr‘: ‘广东广州‘, ‘age‘: 29}]

# eg2:提取所有年龄小于20岁的老师的name,结果为list类型
results2 = jsonpath.jsonpath(json_obj,"$.lemon.teachers[?(@.age < 20)].name")  
print(results2)
# 输出结果为:[‘Happy‘]

二:使用jsonpath_rw

安装jsonpath_rw模块

pip install jsonpath-rw

解析

# 1:导入相关模块
import json
from jsonpath_rw import jsonpath, parse

# 2: 准备json字符串
jsonStr = ‘‘‘ # 同上(略) ‘‘‘

# 3:加载为json对象
json_obj = json.loads(jsonStr)

# 4:采用parse创建jsonpath对象(该案例是得到所有的老师name)
jsonpath_expr = parse(‘$.lemon.teachers[*].name‘)

# 5:通过jsonPath检索json后返回匹配的数据,类型是DatumInContext的list
datumInContexts = jsonpath_expr.find(json_obj)
# 采用列表推导式检索出所有匹配的值
values = [datum.value for datum in datumInContexts]
print(values)
# 输出结果为:[‘华华‘, ‘韬哥‘, ‘Happy‘, ‘歪歪‘]

# 案例2:提取索引为4的老师的name
jsonpath_expr = parse(‘$.lemon.teachers[3].name‘)
datumInContexts = jsonpath_expr.find(json_obj)
print(datumInContexts)
values = [datum.value for datum in datumInContexts]
print(values)
# 结果为:[‘歪歪‘]

更多jsonpath_rw用法参考:

https://pypi.org/project/jsonpath-rw/

背景:

  1. 接口自动化测试实现简单、成本较低、收益较高,越来越受到企业重视
  2. restful风格的api设计大行其道
  3. json成为主流的轻量级数据交换格式

痛点:

  1. 接口关联
    • 也称为关联参数。在应用业务接口中,完成一个业务功能时,有时候一个接口可能不满足业务的整个流程逻辑,需要多个接口配合使用,简单的案例如:B接口的成功调用依赖于A接口,需要在A接口的响应数据(response)中拿到需要的字段,在调用B接口的时候,传递给B接口作为B接口请求参数,拿到后续响应的响应数据。
    • 接口关联通常可以使用正则表达式去提取需要的数据,但对于json这种简洁、清晰层次结构、轻量级的数据交互格式,使用正则未免有点杀鸡用牛刀的感觉(是的,因为我不擅长写正则表达式),我们需要更加简单、直接的提取json数据的方式。
  2. 数据验证
    • 这里的数据验证指的是对响应结果进行数据的校验
    • 接口自动化测试中,对于简单的响应结果(json),可以直接和期望结果进行比对,判断是否完全相等即可。如 json {"status":1,"msg":"登录成功"}
    • 对于格式较复杂,尤其部分数据存在不确定性、会根据实际情况变化的响应结果,简单的判断是否完全相等(断言)通常会失败。如: json {"status":1,"code":"10001","data":[{"id":1,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"1","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-05-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":2,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"2","unfinishedInterest":"1.0","unfinishedPrincipal":"0","repaymentDate":"2018-06-27 12:24:01","actualRepaymentDate":null,"status":"0"},{"id":3,"investId":"1","createTime":"2018-04-27 12:24:01","terms":"3","unfinishedInterest":"1.0","unfinishedPrincipal":"100.00","repaymentDate":"2018-07-27 12:24:01","actualRepaymentDate":null,"status":"0"}],"msg":"获取信息成功"}上面的json结构嵌套了很多信息,完整的匹配几乎不可能成功。比如其中的createTime信息,根据执行接口测试用例的时间每次都不一样。同时这个时间是响应结果中较为次要的信息,在进行接口自动化测试时,是可以选择被忽略的。
    • 我们需要某种简单的方法,能够从json中提取出我们真正关注的信息(通常也被称为关键信息)。如提取出status的值为1,data数组中每个对象的investId都为1,data中第三个对象的unfinishedPrincipal值为100.00,只要这三个关键信息校验通过,我们就认为响应结果没有问题。

解决方案

JsonPath可以完美解决上面的痛点。通过JsonPath可以从多层嵌套的Json中解析出所需要的值。

JsonPath

  • JsonPath参照XPath解析xml的方式来解析Json
  • JsonPath用符号$表示最外层对象,类似于Xpath中的根元素
  • JsonPath可以通过点语法来检索数据,如: shell $.store.book[0].title
  • 也可以使用中括号[]的形式,如 shell $[‘store‘][‘book‘][0][‘title‘]

运算符(Operators)

运算符 说明 $ 根元素 @ 当前元素 * 通配符,可以表示任何元素 .. 递归搜索 . 子节点(元素) [‘‘ (, ‘‘)] 一个或者多个子节点 [ (, )] 一个或者多个数组下标 [start:end] 数组片段,区间为[start,end) [?()] 过滤器表达式,其中表达式结果必须是boolean类型,如可以是比较表达式或者逻辑表达式

JsonPath案例

json

{"lemon":{"teachers":[{"id":"101","name":"华华","addr":"湖南长沙","age":25},{"id":"102","name":"韬哥","age":28},{"id":"103","name":"Happy","addr":"广东深圳","age":16},{"id":"104","name":"歪歪","addr":"广东广州","age":29}],"salesmans":[{"id":"105","name":"毛毛","age":17},{"id":"106","name":"大树","age":27}]},"avg":25}

JsonPath例子及说明

JsonPath 路径说明 $.lemon.teachers[*].name 获取所有老师的的名称 $..name 获取所有人的名称 $.lemon.* 所有的老师和销售 $.lemon..age 所有人的年龄 $..age 所有人的年龄 $.lemon.teachers[*].age 所有老师的年龄 $.lemon.teachers[3] 索引为3(第4个)老师的信息 $..teachers[3] 索引为3(第4个)老师的信息 $.lemon.teachers[-2] 倒数第2个老师的信息 $..teachers[-2] 倒数第2个老师的信息 $..teachers[1,2] 第2到第3个老师的信息 $..teachers[:2] 索引0(包含)到索引2(不包含)的老师信息 $..teachers[1:3] 索引1(包含)到索引3(不包含)的老师信息 $..teachers[-2:] 最后的两个老师的信息 $..teachers[2:] 索引2开始的所有老师信息 $..teachers[?(@.addr)] 所有包含地址的老师信息(jsonpath_rw不支持) $.lemon.teachers[?(@.age < 20)] 所有年龄小于20的年龄信息(jsonpath_rw不支持)

一:使用jsonpath

安装jsonpath模块

pip install jsonpath==0.75

解析

# 1:导入相关模块
import json
import jsonpath

# 2: 准备json字符串
jsonStr = ‘‘‘ { "lemon": { "teachers": [ { "id": "101", "name": "华华", "addr": "湖南长沙", "age": 25 }, { "id": "102", "name": "韬哥", "age": 28 }, { "id": "103", "name": "Happy", "addr": "广东深圳", "age": 16 }, { "id": "104", "name": "歪歪", "addr": "广东广州", "age": 29 } ], "salesmans": [ { "id": "105", "name": "毛毛", "age": 17 }, { "id": "106", "name": "大树", "age": 27 } ] }, "avg": 25 } ‘‘‘

# 3:加载json字符串为json对象
json_obj = json.loads(jsonStr)

# 4:使用jsonpath模块的jsonpath方法提取信息
# eg1: 提取所有包含addr属性的老师信息,结果为list类型
results = jsonpath.jsonpath(json_obj,"$..teachers[?(@.addr)]")  
print(results)
# 输出结果:[{‘id‘: ‘101‘, ‘name‘: ‘华华‘, ‘addr‘: ‘湖南长沙‘, ‘age‘: 25}, {‘id‘: ‘103‘, ‘name‘: ‘Happy‘, ‘addr‘: ‘广东深圳‘, ‘age‘: 16}, {‘id‘: ‘104‘, ‘name‘: ‘歪歪‘, ‘addr‘: ‘广东广州‘, ‘age‘: 29}]

# eg2:提取所有年龄小于20岁的老师的name,结果为list类型
results2 = jsonpath.jsonpath(json_obj,"$.lemon.teachers[?(@.age < 20)].name")  
print(results2)
# 输出结果为:[‘Happy‘]

二:使用jsonpath_rw

安装jsonpath_rw模块

pip install jsonpath-rw

解析

# 1:导入相关模块
import json
from jsonpath_rw import jsonpath, parse

# 2: 准备json字符串
jsonStr = ‘‘‘ # 同上(略) ‘‘‘

# 3:加载为json对象
json_obj = json.loads(jsonStr)

# 4:采用parse创建jsonpath对象(该案例是得到所有的老师name)
jsonpath_expr = parse(‘$.lemon.teachers[*].name‘)

# 5:通过jsonPath检索json后返回匹配的数据,类型是DatumInContext的list
datumInContexts = jsonpath_expr.find(json_obj)
# 采用列表推导式检索出所有匹配的值
values = [datum.value for datum in datumInContexts]
print(values)
# 输出结果为:[‘华华‘, ‘韬哥‘, ‘Happy‘, ‘歪歪‘]

# 案例2:提取索引为4的老师的name
jsonpath_expr = parse(‘$.lemon.teachers[3].name‘)
datumInContexts = jsonpath_expr.find(json_obj)
print(datumInContexts)
values = [datum.value for datum in datumInContexts]
print(values)
# 结果为:[‘歪歪‘]

更多jsonpath_rw用法参考:

https://pypi.org/project/jsonpath-rw/

网友评论