我有类似于 here所述的类似问题,但我尝试过的解决方案都没有. 给出这样的表: Date Exercise Category Weight Reps EstMax RepxWeight Note4/2/16 Deadlift Legs 135 7 166.4685 7x135 easy4/2/16 Deadlift Legs 135 7 166.4
给出这样的表:
Date Exercise Category Weight Reps EstMax RepxWeight Note 4/2/16 Deadlift Legs 135 7 166.4685 7x135 easy 4/2/16 Deadlift Legs 135 7 166.4685 7x135 kinda easy 4/2/16 Deadlift Legs 135 7 166.4685 7x135 tired 4/2/16 Bench Press Chest 95 5 110.8175 5x95 hard 4/2/16 Bench Press Chest 135 2 143.991 2x135 not hard 4/9/16 Bench Press Chest 135 2 143.991 2x135 a little hard 4/9/16 Bench Press Chest 135 2 143.991 2x135 super tired 4/18/16 Deadlift Legs 155 8 196.292 8x155 … 4/18/16 Deadlift Legs 155 5 180.8075 5x155 bad day 5/8/16 Deadlift Legs 185 3 203.4815 3x185 good day 5/8/16 Deadlift Legs 185 3 203.4815 3x185 felt easy 5/8/16 Bench Press Chest 115 4 130.318 4x115 easy 5/8/16 Bench Press Chest 115 4 130.318 4x115 hard
我想聚合以基于多个其他列(例如日期和练习)获取具有特定列(例如,EstMax)的最大值的行,但是还保留行中的所有其他列.并且在具有相同最大值的多个条目的情况下,取第一个条目.
预期的输出看起来像这样:
Date Exercise Category Weight Reps EstMax RepxWeight Note 4/2/16 Deadlift Legs 135 7 166.4685 7x135 easy 4/2/16 Bench Press Chest 135 2 143.991 2x135 not hard 4/9/16 Bench Press Chest 135 2 143.991 2x135 a little hard 4/18/16 Deadlift Legs 155 8 196.292 8x155 … 5/8/16 Deadlift Legs 185 3 203.4815 3x185 good day 5/8/16 Bench Press Chest 115 4 130.318 4x115 hard
我试过的一些方法的例子;在每种情况下,’额外列’最终都被用作聚合的因素,这不是我想要的.
data <- structure(list(Date = structure(c(2L, 2L, 2L, 2L, 2L, 3L, 3L, 1L, 1L, 4L, 4L, 4L, 4L), .Label = c("4/18/16", "4/2/16", "4/9/16", "5/8/16"), class = "factor"), Exercise = structure(c(2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L), .Label = c("Bench Press", "Deadlift"), class = "factor"), Category = structure(c(2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L), .Label = c("Chest", "Legs"), class = "factor"), Weight = c(135L, 135L, 135L, 95L, 135L, 135L, 135L, 155L, 155L, 185L, 185L, 115L, 115L), Reps = c(7L, 7L, 7L, 5L, 2L, 2L, 2L, 8L, 5L, 3L, 3L, 4L, 4L), EstMax = c(166.4685, 166.4685, 166.4685, 110.8175, 143.991, 143.991, 143.991, 196.292, 180.8075, 203.4815, 203.4815, 130.318, 130.318), RepxWeight = structure(c(6L, 6L, 6L, 5L, 1L, 1L, 1L, 7L, 4L, 2L, 2L, 3L, 3L), .Label = c("2x135", "3x185", "4x115", "5x155", "5x95", "7x135", "8x155"), class = "factor"), Note = structure(c(4L, 8L, 11L, 7L, 9L, 2L, 10L, 1L, 3L, 6L, 5L, 4L, 7L), .Label = c("…", "a little hard", "bad day", "easy", "felt easy", "good day", "hard", "kinda easy", "not hard", "super tired", "tired"), class = "factor")), .Names = c("Date", "Exercise", "Category", "Weight", "Reps", "EstMax", "RepxWeight", "Note"), class = "data.frame", row.names = c(NA, -13L)) # base R aggregate(EstMax ~ Date + Exercise, data = data, FUN = max) # Date Exercise EstMax # 1 4/2/16 Bench Press 143.9910 # 2 4/9/16 Bench Press 143.9910 # 3 5/8/16 Bench Press 130.3180 # 4 4/18/16 Deadlift 196.2920 # 5 4/2/16 Deadlift 166.4685 # 6 5/8/16 Deadlift 203.4815 aggregate(EstMax ~ Date + Exercise + RepxWeight + Note, data = data, FUN = max) # Date Exercise RepxWeight Note EstMax # 1 4/18/16 Deadlift 8x155 … 196.2920 # 2 4/9/16 Bench Press 2x135 a little hard 143.9910 # 3 4/18/16 Deadlift 5x155 bad day 180.8075 # 4 5/8/16 Bench Press 4x115 easy 130.3180 # 5 4/2/16 Deadlift 7x135 easy 166.4685 # 6 5/8/16 Deadlift 3x185 felt easy 203.4815 # 7 5/8/16 Deadlift 3x185 good day 203.4815 # 8 5/8/16 Bench Press 4x115 hard 130.3180 # 9 4/2/16 Bench Press 5x95 hard 110.8175 # 10 4/2/16 Deadlift 7x135 kinda easy 166.4685 # 11 4/2/16 Bench Press 2x135 not hard 143.9910 # 12 4/9/16 Bench Press 2x135 super tired 143.9910 # 13 4/2/16 Deadlift 7x135 tired 166.4685 # data table library("data.table") data_dt <- data.table(data) data_dt[ , max(EstMax), by = c("Date", "Exercise")] # Date Exercise V1 # 1: 4/2/16 Deadlift 166.4685 # 2: 4/2/16 Bench Press 143.9910 # 3: 4/9/16 Bench Press 143.9910 # 4: 4/18/16 Deadlift 196.2920 # 5: 5/8/16 Deadlift 203.4815 # 6: 5/8/16 Bench Press 130.3180 data_dt[, max(EstMax), .(Date, Exercise, Weight, Reps, RepxWeight, Note)] # Date Exercise Weight Reps RepxWeight Note V1 # 1: 4/2/16 Deadlift 135 7 7x135 easy 166.4685 # 2: 4/2/16 Deadlift 135 7 7x135 kinda easy 166.4685 # 3: 4/2/16 Deadlift 135 7 7x135 tired 166.4685 # 4: 4/2/16 Bench Press 95 5 5x95 hard 110.8175 # 5: 4/2/16 Bench Press 135 2 2x135 not hard 143.9910 # 6: 4/9/16 Bench Press 135 2 2x135 a little hard 143.9910 # 7: 4/9/16 Bench Press 135 2 2x135 super tired 143.9910 # 8: 4/18/16 Deadlift 155 8 8x155 … 196.2920 # 9: 4/18/16 Deadlift 155 5 5x155 bad day 180.8075 # 10: 5/8/16 Deadlift 185 3 3x185 good day 203.4815 # 11: 5/8/16 Deadlift 185 3 3x185 felt easy 203.4815 # 12: 5/8/16 Bench Press 115 4 4x115 easy 130.3180 # 13: 5/8/16 Bench Press 115 4 4x115 hard 130.3180
特别喜欢碱R溶液.还看到了which.max()函数可能有用,但无法弄清楚如何将其应用于此.
我看过的其他相关问题却没有解决这个问题:
Adding a non-aggregated column to an aggregated data set based on the aggregation of another column
Only keep min value for each factor level
How to select the row with the maximum value in each group
aggregating multiple columns in data.table
How to aggregate some columns while keeping other columns in R?
我知道你寻求一个基本的R解决方案,但同时,这里有一个dplyr:library(dplyr) data %>% group_by(Date, Exercise) %>% slice(which.max(EstMax)) # # A tibble: 6 x 8 # # Groups: Date, Exercise [6] # Date Exercise Category Weight Reps EstMax RepxWeight Note # <fctr> <fctr> <fctr> <int> <int> <dbl> <fctr> <fctr> # 1 4/18/16 Deadlift Legs 155 8 196.2920 8x155 … # 2 4/2/16 Bench Press Chest 135 2 143.9910 2x135 not hard # 3 4/2/16 Deadlift Legs 135 7 166.4685 7x135 easy # 4 4/9/16 Bench Press Chest 135 2 143.9910 2x135 a little hard # 5 5/8/16 Bench Press Chest 115 4 130.3180 4x115 easy # 6 5/8/16 Deadlift Legs 185 3 203.4815 3x185 good day
编辑
data.table不是我的强项,但为了完整起见,这是我的尝试:
library(data.table) setDT(data)[, .SD[which.max(EstMax)], by = .(Date, Exercise)] # Date Exercise Category Weight Reps EstMax RepxWeight Note # 1: 4/2/16 Deadlift Legs 135 7 166.4685 7x135 easy # 2: 4/2/16 Bench Press Chest 135 2 143.9910 2x135 not hard # 3: 4/9/16 Bench Press Chest 135 2 143.9910 2x135 a little hard # 4: 4/18/16 Deadlift Legs 155 8 196.2920 8x155 … # 5: 5/8/16 Deadlift Legs 185 3 203.4815 3x185 good day # 6: 5/8/16 Bench Press Chest 115 4 130.3180 4x115 easy