我通常使用reshape包来聚合一些数据(呃),通常用plyr,因为每个都有超级棒的功能.最近,我收到了一个建议,切换到reshape2并尝试一下,现在我似乎无法再使用每个魔法. 重塑 m - melt(mtcars, id.v
重塑
> m <- melt(mtcars, id.vars = c("am", "vs"), measure.vars = "hp") > cast(m, am + vs ~ variable, each(min, max, mean, sd)) am vs hp_min hp_max hp_mean hp_sd 1 0 0 150 245 194.16667 33.35984 2 0 1 62 123 102.14286 20.93186 3 1 0 91 335 180.83333 98.81582 4 1 1 52 113 80.57143 24.14441
reshape2
require(plyr) > m <- melt(mtcars, id.vars = c("am", "vs"), measure.vars = "hp") > dcast(m, am + vs ~ variable, each(min, max, mean, sd)) Error in structure(ordered, dim = ns) : dims [product 4] do not match the length of object [16] In addition: Warning messages: 1: In fs[[i]](x, ...) : no non-missing arguments to min; returning Inf 2: In fs[[i]](x, ...) : no non-missing arguments to max; returning -Inf
我没有心情去梳理它,因为我之前的代码就像一个重塑的魅力,但我真的很想知道:
>是否有可能与dcast一起使用?
>是否建议使用reshape2?重塑已弃用?
If the combination of variables you supply does not uniquely identify
one row in the original data set, you will need to supply an
aggregating function, fun.aggregate. This function should take a
vector of numbers and return a single summary statistic.
看看Hadley的reshape2的github页面表明他知道这个功能被删除了,但似乎认为在plyr中做得更好,大概是这样的:
ddply(m,.(am,vs),summarise,min = min(value), max = max(value), mean = mean(value), sd = sd(value))
或者如果你真的想继续使用每个:
ddply(m,.(am,vs),function(x){each(min,max,mean,sd)(x$value)})