我试图使用proc ds2尝试通过使用多线程功能在正常数据步骤中获得一些性能提升. fred.testdata是一个包含500万个观测值的SPDE数据集.我的代码如下: proc ds2; thread home_claims_thread / overwrite =
fred.testdata是一个包含500万个观测值的SPDE数据集.我的代码如下:
proc ds2;
thread home_claims_thread / overwrite = yes;
/*declare char(10) producttype;
declare char(12) wrknat_clmtype;
declare char(7) claimtypedet;
declare char(1) event_flag;*/
/*declare date week_ending having format date9.;*/
method run();
/*declare char(7) _week_ending;*/
set fred.testdata;
if claim = 'X' then claimtypedet= 'ABC';
else if claim = 'Y' then claimtypedet= 'DEF';
/*_week_ending = COMPRESS(exposmth,'M');
week_ending = to_date(substr(_week_ending,1,4) || '-' || substr(_week_ending,5,2) || '-01');*/
end;
endthread;
data home_claims / overwrite = yes;
declare thread home_claims_thread t;
method run();
set from t threads=8;
end;
enddata;
run;
quit;
我没有包括所有的IF语句,只包含了一些,否则它会占用几页(你应该得到这个想法).由于代码目前的工作速度比正常数据步骤快得多,但是当发生以下任何一种情况时会出现严重的性能问题:
>我取消注释任何声明语句
>我在fred.testdata中包含任何数字变量(即使不对数字变量执行任何计算)
我的问题是:
>有没有办法将数值变量引入fred.testdata而不会导致DS2比正常数据步骤慢得多? (对于包含数字列/ s的500万行的小表格,ds2的实时时间约为1分30秒,正常数据步骤的实时时间约为20秒).实际的全表更接近6亿行.例如,我希望能够进行week_ending转换,而不会在运行时引入5倍的性能损失. ds2 WITHOUT声明语句和数值变量的运行时间大约需要7秒
>有没有办法在ds2中压缩表而无需执行额外的数据步骤来压缩它?
谢谢
尝试两种方法:使用proc hpds2使SAS处理并行执行,或采用更手动的方法.请注意,使用这些方法之一始终无法保持顺序.方法1:PROC HPDS2
HPDS2是一种执行大规模并行数据处理的方法.在单机模式下,它将为每个核心进行并行运行,然后将数据全部重新组合在一起.您只需对代码稍作修改即可运行它.
hpds2有一个设置,您可以在proc语句中的data和out语句中声明数据.您的数据和set语句将始终使用以下语法:
data DS2GTF.out;
method run();
set DS2GTF.in;
<code>;
end;
enddata;
知道了,我们可以修改您的代码以在HPDS2上运行:
proc hpds2 data=fred.test_data
out=home_claims;
data DS2GTF.out;
/*declare char(10) producttype;
declare char(12) wrknat_clmtype;
declare char(7) claimtypedet;
declare char(1) event_flag;*/
/*declare date week_ending having format date9.;*/
method run();
/*declare char(7) _week_ending;*/
set DS2GTF.in;
if claim = 'X' then claimtypedet= 'ABC';
else if claim = 'Y' then claimtypedet= 'DEF';
/*_week_ending = COMPRESS(exposmth,'M');
week_ending = to_date(substr(_week_ending,1,4) || '-' || substr(_week_ending,5,2) || '-01');*/
end;
enddata;
run;
quit;
方法2:使用rsubmit拆分数据并追加
下面的代码使用rsubmit和直接观察访问来读取块中的数据,然后在最后将它们全部附加在一起.如果您的数据设置为Block I/O,则此工作可以特别好
options sascmd='!sascmd'
autosignon=yes
noconnectwait
noconnectpersist
;
%let cpucount = %sysfunc(getoption(cpucount));
%macro parallel_execute(data=, out=, threads=&cpucount);
/* Get total obs from data */
%let dsid = %sysfunc(open(&data.));
%let n = %sysfunc(attrn(&dsid., nlobs));
%let rc = %sysfunc(close(&dsid.));
/* Run &threads rsubmit sessions */
%do i = 1 %to &threads;
/* Determine the records that each worker will read */
%let firstobs = %sysevalf(&n.-(&n./&threads.)*(&threads.-&i+1)+1, floor);
%let lastobs = %sysevalf(&n.-(&n./&threads.)*(&threads.-&i.), floor);
/* Get this session's work directory */
%let workdir = %sysfunc(getoption(work));
/* Send all macro variables to the remote session, and simultaneously start the remote session */
%syslput _USER_ / remote=worker&i.;
/* Check for an input libname */
%if(%scan(&data., 2, .) NE) %then %do;
%let inlib = %scan(&data., 1, .);
%let indsn = %scan(&data., 2, .);
%end;
%else %do;
%let inlib = workdir;
%let indsn = &data.;
%end;
/* Check for an output libname */
%if(%scan(&out., 2, .) NE) %then %do;
%let outlib = %scan(&out., 1, .);
%let outdsn = %scan(&out., 2, .);
%end;
%else %do;
%let outlib = workdir;
%let outdsn = &out.;
%end;
/* Work library location of this session to be inherited by the parallel session */
%let workdir = %sysfunc(getoption(work));
/* Sign on to a remote session and send over all user-made macro variables */
%syslput _USER_ / remote=worker&i.;
/* Run code on remote session &i */
rsubmit remote=worker&i. inheritlib=(&inlib.);
libname workdir "&workdir.";
data workdir._&outdsn._&i.;
set &inlib..&indsn.(firstobs=&firstobs. obs=&lastobs.);
/* <PUT CODE HERE>;*/
run;
endrsubmit;
%end;
/* Wait for everything to complete */
waitfor _ALL_;
/* Append all of the chunks together */
proc datasets nolist;
delete &out.;
%do i = 1 %to &threads.;
append base=&out.
data=_&outdsn._&i.
force
;
%end;
/* Optional: remove all temporary data */
/* delete _&outdsn._:;*/
quit;
libname workdir clear;
%mend;
您可以使用以下代码测试其功能:
data pricedata;
set sashelp.pricedata;
run;
%parallel_execute(data=pricedata, out=test, threads=3);
如果您查看WORK目录中的临时文件,您会看到它在3个并行进程中均匀地分割数据集,并且它会累加到原始总计.
_test_1 = 340 _test_2 = 340 _test_3 = 340 TOTAL = 1020 pricedata = 1020
