我知道有很多问题,比如 Getting daily averages with pandas 和 How get monthly mean in pandas using groupby但我得到一个奇怪的错误. 简单数据集,带有一个索引列(类型时间戳)和一个值列. 想获得数据的月
和 How get monthly mean in pandas using groupby但我得到一个奇怪的错误.
简单数据集,带有一个索引列(类型时间戳)和一个值列.
想获得数据的月平均值.
In [76]: df.head() Out[76]: A 2008-01-02 1 2008-01-03 2 2008-01-04 3 2008-01-07 4 2008-01-08 5
但是,当我分组时,我只得到索引的组而不是值
In [74]: df.head().groupby(lambda x: x.month).groups Out[74]: {1: [Timestamp('2008-01-02 00:00:00'), Timestamp('2008-01-03 00:00:00'), Timestamp('2008-01-04 00:00:00'), Timestamp('2008-01-07 00:00:00'), Timestamp('2008-01-08 00:00:00')]}
尝试采用means()会导致错误:
尝试了df.head().resample(“M”,how =’mean’)和df.head().groupby(lambda x:x.month).mean()
并获取错误:DataError:没有要聚合的数字类型
In [75]: df.resample("M", how='mean') --------------------------------------------------------------------------- DataError Traceback (most recent call last) <ipython-input-75-79dc1a060ba4> in <module>() ----> 1 df.resample("M", how='mean') /usr/local/lib/python2.7/site-packages/pandas/core/generic.pyc in resample(self, rule, how, axis, fill_method, closed, label, convention, kind, loffset, limit, base) 2878 fill_method=fill_method, convention=convention, 2879 limit=limit, base=base) -> 2880 return sampler.resample(self).__finalize__(self) 2881 2882 def first(self, offset): /usr/local/lib/python2.7/site-packages/pandas/tseries/resample.pyc in resample(self, obj) 82 83 if isinstance(ax, DatetimeIndex): ---> 84 rs = self._resample_timestamps() 85 elif isinstance(ax, PeriodIndex): 86 offset = to_offset(self.freq) /usr/local/lib/python2.7/site-packages/pandas/tseries/resample.pyc in _resample_timestamps(self) 286 # Irregular data, have to use groupby 287 grouped = obj.groupby(grouper, axis=self.axis) --> 288 result = grouped.aggregate(self._agg_method) 289 290 if self.fill_method is not None: /usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in aggregate(self, arg, *args, **kwargs) 2436 def aggregate(self, arg, *args, **kwargs): 2437 if isinstance(arg, compat.string_types): -> 2438 return getattr(self, arg)(*args, **kwargs) 2439 2440 result = OrderedDict() /usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in mean(self) 664 """ 665 try: --> 666 return self._cython_agg_general('mean') 667 except GroupByError: 668 raise /usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in _cython_agg_general(self, how, numeric_only) 2356 2357 def _cython_agg_general(self, how, numeric_only=True): -> 2358 new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) 2359 return self._wrap_agged_blocks(new_items, new_blocks) 2360 /usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in _cython_agg_blocks(self, how, numeric_only) 2406 2407 if len(new_blocks) == 0: -> 2408 raise DataError('No numeric types to aggregate') 2409 2410 return data.items, new_blocks DataError: No numeric types to aggregate是的,你应该尝试使用像df [‘A’] = df [‘A’].astype(int)之类的东西来强制A到数字.可能值得检查初始数据读入中是否有任何内容导致它成为对象而不是数字.