给定任意数组,保持任意数量的任意类型的元素,例如 mySet1 = Set.fromList [1,2,3,4] 要么 mySet2 = Set.fromList ["a","b","c","d"] 要么 mySet3 = Set.fromList [A, B, C, D] 对于一些数据构造函数A,B,C,D,… 生成所有
mySet1 = Set.fromList [1,2,3,4]
要么
mySet2 = Set.fromList ["a","b","c","d"]
要么
mySet3 = Set.fromList [A, B, C, D]
对于一些数据构造函数A,B,C,D,…
生成所有无序元素对的计算最有效方法是给定集合?即
setPairs mySet1 == Set.fromList [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
要么
setPairs mySet2 == fromList [ ("a","b") , ("a","c") , ("a","d") , ("b","c") , ("b","d") , ("c","d") ]
要么
setPairs mySet2 == fromList [ (A,B) , (A,C) , (A,D) , (B,C) , (B,D) , (C,D) ]
我最初的天真猜测是:
setPairs s = fst $Set.fold (\e (pairAcc, elementsLeft) -> ( Set.fold (\e2 pairAcc2 -> Set.insert (e2, e) pairAcc2 ) pairAcc $Set.delete e elementsLeft , Set.delete e elementsLeft ) ) (Set.empty, s) s
但肯定不是最好的解决方案吗?
基准测试可能证明我错了,但我的怀疑是,在设定的代表性中没有胜利.无论如何你都需要O(n ^ 2),因为这是输出的大小.关键优势在于生成列表,以便您可以使用对S.fromDistinctAscList的调用,这样只需要花费O(n)来构建集合本身.以下是非常干净的,保留了相当多的共享,并且通常是我能想象的最简单,最直接和最直观的解决方案.
pairs s = S.fromDistinctAscList . concat $zipWith zip (map (cycle . take 1) ts) (drop 1 ts) where ts = tails $S.toList s
编辑
更短/更清晰(不确定性能,但可能更好/更好):
pairs s = S.fromDistinctAscList [(x,y) | (x:xt) <- tails (S.toList s), y <- xt]