我是R的新手,无法运行功能来获得我需要的答案.我有示例数据PCSTest http://pastebin.com/z9Ti3nHB 看起来像这样: Date Site Word--------------------------------------9/1/2012 slashdot javascript9/1/2012 stackexchan
http://pastebin.com/z9Ti3nHB
看起来像这样:
Date Site Word -------------------------------------- 9/1/2012 slashdot javascript 9/1/2012 stackexchange R 9/1/2012 reddit R 9/1/2012 slashdot javascript 9/1/2012 stackexchange javascript 9/5/2012 reddit R 9/8/2012 slashdot javascript 9/8/2012 stackexchange R 9/8/2012 reddit R 9/8/2012 slashdot javascript 9/18/2012 stackexchange R 9/18/2012 reddit R 9/18/2012 slashdot javascript 9/18/2012 stackexchange R 9/27/2012 reddit R 9/27/2012 slashdot R
我的目标是随着时间的推移寻找与网站相关的不同单词出现的趋势.我可以算一下:
library(plyr) PCSTest <- read.csv(file="c:/PCS/PCS Data - Test.csv", header=TRUE) PCSTest$Date <- as.Date(PCSTest$Date, "%m/%d/%Y") PCSTest$Date <- as.POSIXct(PCSTest$Date) countTest <- count(PCSTest, c("Date", "Site", "Word"))
这给了这个:
Date Site Word freq 1 2012-08-31 20:00:00 reddit R 4 2 2012-08-31 20:00:00 slashdot javascript 7 3 2012-08-31 20:00:00 stackexchange javascript 1 4 2012-08-31 20:00:00 stackexchange R 2 5 2012-09-01 20:00:00 reddit javascript 2 6 2012-09-01 20:00:00 slashdot R 3 7 2012-09-04 20:00:00 reddit R 1 8 2012-09-07 20:00:00 reddit R 1 9 2012-09-07 20:00:00 slashdot javascript 2 10 2012-09-07 20:00:00 stackexchange R 1 11 2012-09-09 20:00:00 stackexchange javascript 4 12 2012-09-10 20:00:00 slashdot R 4 13 2012-09-14 20:00:00 reddit javascript 4 14 2012-09-17 20:00:00 reddit R 4 15 2012-09-17 20:00:00 slashdot javascript 1 16 2012-09-17 20:00:00 stackexchange R 2 17 2012-09-19 20:00:00 reddit javascript 2 18 2012-09-23 20:00:00 stackexchange javascript 2 19 2012-09-24 20:00:00 reddit javascript 3 20 2012-09-24 20:00:00 stackexchange javascript 1 21 2012-09-24 20:00:00 stackexchange R 4 22 2012-09-25 20:00:00 reddit javascript 5 23 2012-09-25 20:00:00 slashdot javascript 3 24 2012-09-25 20:00:00 stackexchange R 7 25 2012-09-26 20:00:00 reddit R 1 26 2012-09-26 20:00:00 slashdot R 5
或将它们全部绘制成:
library(ggplot2) ggplot(data=countTest, aes(x=Date, y=freq, group=interaction(Site, Word), colour=interaction(Site, Word), shape=Site)) + geom_line() + geom_point()
我现在需要对数据进行一些计算,所以我尝试了聚合
aggregate(freq ~ Site + Word, data = countTest, function(freq) cbind(mean(freq), max(freq)))[order(-agg$freq[,3]),]
这使:
Site Word freq.1 freq.2 2 slashdot javascript 3.25 7.00 5 slashdot R 4.00 5.00 1 reddit javascript 3.20 5.00 4 reddit R 2.20 4.00 6 stackexchange R 3.20 7.00 3 stackexchange javascript 2.00 4.00
在最后一个结果中我想要的是一个具有每天平均频率的列,例如…… sum(freq)/ 20天,根据数据计算,甚至可能是移动平均值.
另外,我想要另一个具有斜率/线性回归的列.我如何计算聚合函数?
或者,我如何更好/更快地做出这些?我知道有apply和data.table函数,但我不知道如何使用它们.任何帮助将不胜感激!
我不确定你想要做什么,但是dplyr(或者plyr)会帮助你.这是一个例子.如果你明确告诉你想要什么,你将获得更多帮助.
d <- read.csv("~/Downloads/r_data.txt") d$Date <- as.POSIXct(as.Date(d$Date, "%m/%d/%Y")) library(dplyr) d.cnt <- d %>% group_by(Date, Site, Word) %>% summarise(cnt = n()) # average per day date.range <- d$Date %>% range %>% diff %>% as.numeric # gives 26 days or date.range <- d$Date %>% unique %>% length # gives 13 days d.ave <- d.cnt %>% group_by(Site, Word) %>% summarize(ave_per_day = sum(cnt)/date.range) # slope d.reg <- d.cnt %>% group_by(Site, Word) %>% do({fit = lm(cnt ~ Date, data = .); data.frame(int = coef(fit)[1], slope = coef(fit)[2])}) # plot the slope value library(ggplot2) ggplot(d.reg, aes(Site, slope, fill = Word)) + geom_bar(stat = "identity", position = "dodge")