这里有两个替代代码(在Julia中编码),它们基本上是相同的. counter = 0for i = myArray counter = counter + 1 Do1(i) Do2(counter)end 和 for counter = 1:length(myArray) i = myArray[counter] Do1(i) Do2(j)end 什么是好的做法
counter = 0
for i = myArray
counter = counter + 1
Do1(i)
Do2(counter)
end
和
for counter = 1:length(myArray)
i = myArray[counter]
Do1(i)
Do2(j)
end
什么是好的做法?哪个代码更快?哪个代码消耗的内存较少?哪个代码不易出错?为什么?
在julia中,您可以非常轻松地测试它:function indexing(A)
si = 0
sA = zero(eltype(A))
for i = 1:length(A)
sA += A[i]
si += i
end
si, sA
end
function counter(A)
si = 0
sA = zero(eltype(A))
i = 0
for a in A
sA += a
si += (i += 1)
end
si, sA
end
function enumrt(A)
si = 0
sA = zero(eltype(A))
for (i, a) in enumerate(A)
sA += a
si += i
end
si, sA
end
A = rand(Float32, 10^8)
# Compile all the functions, including those needed to time things
indexing(A)
counter(A)
enumrt(A)
@time 1+1
# Test the timing
@time indexing(A)
@time counter(A)
@time enumrt(A)
输出:
elapsed time: 4.61e-6 seconds (80 bytes allocated) elapsed time: 0.12948093 seconds (144 bytes allocated) elapsed time: 0.191082557 seconds (144 bytes allocated) elapsed time: 0.331076493 seconds (160 bytes allocated)
如果你在每个循环之前添加@inbounds注释,那么你得到这个:
elapsed time: 4.632e-6 seconds (80 bytes allocated) elapsed time: 0.12512546 seconds (144 bytes allocated) elapsed time: 0.12340103 seconds (144 bytes allocated) elapsed time: 0.323285599 seconds (160 bytes allocated)
所以前两个之间的区别实际上只是自动边界检查删除的有效性.最后,如果您真的想深入了解详细信息,可以使用@code_native索引(A)检查生成的机器代码,或使用@code_llvm检查LLVM IR(内部表示).
但是,在某些情况下,可读性可能更重要,因此枚举方法是我经常使用的方法(但不是真正的性能关键代码).
