C - The Football Season 先考虑求解 \[ x\times w + y\times d=p \] 若存在一组解 \[ \begin{cases} x_0\y_0 = kw + v (0vw)\\end{cases} \] 则 \[ x_0 \times w + y_0 \times d = p\\Rightarrow x_0 \times w + (kw+v)\times d = p\\Rightarrow
C - The Football Season
先考虑求解
\[ x\times w + y\times d=p \]
若存在一组解
\[ \begin{cases} x_0\y_0 = kw + v & (0<v<w)\\end{cases} \]
则
\[ x_0 \times w + y_0 \times d = p\\Rightarrow x_0 \times w + (kw+v)\times d = p\\Rightarrow x_0\times w + k\times w\times d + v\times d = p\\Rightarrow (x_0+k\times d)\times w + v\times d = p ~~~~~ \]
所以一定存在一组解
\[ \begin{cases} x = x_0 + k\times d\y = v \end{cases} \]
并且由于\(w> d\)
有
\[ x + y = x_0 + k\times d + v < x_0 + k\times w + v \]
前者比后者更有可能成为答案
所以直接枚举所有的v即可
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll n,p,w,d; int main(){ cin >> n >> p >> w >> d; for(ll v=0;v<w;v++){ if((p - v * d) % w == 0){ ll x = (p - v * d) / w; if(x >= 0 && x + v <= n){ printf("%lld %lld %lld\n",x,v,n-x-v); return 0; } } } puts("-1"); return 0; }