atcoder (老版atcoder和新版的访问速度不是一个级别的(划掉) 这个题一个很关键的点:只考虑 \(x,y\) ,不考虑 \(z\) 我们假设 \(i\) 选择 \(A_i\) , \(j\) 选择 \(B_j\) 比两者交换选择时更优,则有
atcoder
(老版atcoder和新版的访问速度不是一个级别的(划掉)
这个题一个很关键的点:只考虑\(x,y\),不考虑\(z\)
我们假设\(i\)选择\(A_i\),\(j\)选择\(B_j\)比两者交换选择时更优,则有\(A_i+B_j>A_j+B_i\),移项得\(A_i-B_i>A_j-B_j\).做到这里一个显然的贪心就出来了:我们将所有的人按照\(A_i-B_i\)从大到小排序,前\(x\)个人选择\(A_i\),剩下的\(y\)个人选择\(B_i\)即为最优决策
那么现在再来考虑\(z\)的情况,首先继续按照\(A_i-B_i\)排序,那么同样不会存在排在前面的选择\(B_i\)同时排在后面的选择了\(A_i\)的情况,因此必然存在一个分界点使得分界点之前的一段不会出现\(B_i\),分界点之后的一段不会出现\(A_i\).再考虑\(C_i\)就会发现这两段分别是与最开始相同的问题,我们对每个子问题开一个堆,同时在枚举分界点的过程中维护当前所选择的\(A_i\)或者是\(B_i\)即可,具体过程可以参照下面的代码
#include<iostream> #include<string.h> #include<string> #include<stdio.h> #include<algorithm> #include<vector> #include<math.h> #include<queue> #include<set> #include<map> using namespace std; typedef long long ll; typedef long double db; typedef pair<int,int> pii; const int N=10000; const db pi=acos(-1.0); #define lowbit(x) (x)&(-x) #define sqr(x) (x)*(x) #define rep(i,a,b) for (register int i=a;i<=b;i++) #define per(i,a,b) for (register int i=a;i>=b;i--) #define fir first #define sec second #define mp(a,b) make_pair(a,b) #define pb(a) push_back(a) #define maxd 998244353 #define eps 1e-8 struct pnode{int a,b,c;}p[300100]; bool operator <(pnode p,pnode q) {return p.a-p.b>q.a-q.b;} struct node{int a,b;}; bool operator <(node p,node q) {return p.a-p.b>q.a-q.b;} priority_queue<node> q; int n,na,nb,nc; ll f[300300],g[300300]; int read() { int x=0,f=1;char ch=getchar(); while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();} while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();} return x*f; } int main() { na=read();nb=read();nc=read();n=na+nb+nc; rep(i,1,n) { p[i].a=read();p[i].b=read();p[i].c=read(); } sort(p+1,p+1+n); //rep(i,1,n) cout << p[i].a << " " << p[i].b << " " << p[i].c << endl; ll sum=0; rep(i,1,na) { node tmp; tmp.a=p[i].a;tmp.b=p[i].c; q.push(tmp);sum+=p[i].a; } f[na]=sum; rep(i,na+1,na+nc) { node now=q.top(); if (now.a-now.b<p[i].a-p[i].c) { sum-=now.a;sum+=now.b; q.pop(); node tmp; tmp.a=p[i].a;tmp.b=p[i].c;sum+=p[i].a; q.push(tmp); } else sum+=p[i].c; f[i]=sum; } sum=0; while (!q.empty()) q.pop(); //rep(i,1,n) cout << f[i] << " ";cout << endl; per(i,n,n-nb+1) { node tmp; tmp.a=p[i].b;tmp.b=p[i].c; q.push(tmp);sum+=p[i].b; } g[n-nb+1]=sum; per(i,n-nb,na+1) { node now=q.top(); //cout << now.a << " " << now.b << endl; if (now.a-now.b<p[i].b-p[i].c) { sum-=now.a;sum+=now.b; q.pop(); node tmp; tmp.a=p[i].b;tmp.b=p[i].c;sum+=p[i].b; q.push(tmp); } else sum+=p[i].c; g[i]=sum; } ll ans=0; //rep(i,1,n) cout << g[i] << " ";cout << endl; rep(i,na,n-nb+1) ans=max(ans,f[i]+g[i+1]); printf("%lld",ans); return 0; }