当前位置 : 主页 > 编程语言 > python >

python机器学习使数据更鲜活的可视化工具Pandas_Alive

来源:互联网 收集:自由互联 发布时间:2021-12-01
目录 安装方法 使用说明 支持示例展示 水平条形图 垂直条形图比赛 条形图 饼图 多边形地理空间图 多个图表 总结 数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持
目录
  • 安装方法
  • 使用说明
  • 支持示例展示
    • 水平条形图
    • 垂直条形图比赛
    • 条形图
    • 饼图
    • 多边形地理空间图
    • 多个图表
  • 总结

    数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错。

    安装方法

    pip install pandas_alive  # 或者
    conda install pandas_alive -c conda-forge
    

    使用说明

    pandas_alive 的设计灵感来自 bar_chart_race,为方便快速进行动画可视化制作,在数据的格式上需要满足如下条件:

    • 每行表示单个时间段
    • 每列包含特定类别的值
    • 索引包含时间组件(可选)

    在这里插入图片描述

    支持示例展示

    水平条形图

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/perpendicular-example.gif',perpendicular_bar_func='mean')
    

    垂直条形图比赛

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/example-barv-chart.gif',orientation='v')
    

    条形图

    与时间与 x 轴一起显示的折线图类似

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.sum(axis=1).fillna(0).plot_animated(filename='examples/example-bar-chart.gif',kind='bar',
            period_label={'x':0.1,'y':0.9},
            enable_progress_bar=True, steps_per_period=2, interpolate_period=True, period_length=200
    )
    

    饼图

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    covid_df.plot_animated(filename='examples/example-pie-chart.gif',kind="pie",rotatelabels=True,period_label={'x':0,'y':0})
    

    多边形地理空间图

    import geopandas
    import pandas_alive
    import contextily
    gdf = geopandas.read_file('data/italy-covid-region.gpkg')
    gdf.index = gdf.region
    gdf = gdf.drop('region',axis=1)
    map_chart = gdf.plot_animated(filename='examples/example-geo-polygon-chart.gif',basemap_format={'source':contextily.providers.Stamen.Terrain})
    

    多个图表

    pandas_alive 支持单个可视化中的多个动画图表。

    示例1

    import pandas_alive
    urban_df = pandas_alive.load_dataset("urban_pop")
    animated_line_chart = (
        urban_df.sum(axis=1)
        .pct_change()
        .fillna(method='bfill')
        .mul(100)
        .plot_animated(kind="line", title="Total % Change in Population",period_label=False,add_legend=False)
    )
    animated_bar_chart = urban_df.plot_animated(n_visible=10,title='Top 10 Populous Countries',period_fmt="%Y")
    pandas_alive.animate_multiple_plots('examples/example-bar-and-line-urban-chart.gif',[animated_bar_chart,animated_line_chart],
        title='Urban Population 1977 - 2018', adjust_subplot_top=0.85, enable_progress_bar=True)
    

    示例2

    import pandas_alive
    covid_df = pandas_alive.load_dataset()
    animated_line_chart = covid_df.diff().fillna(0).plot_animated(kind='line',period_label=False,add_legend=False)
    animated_bar_chart = covid_df.plot_animated(n_visible=10)
    pandas_alive.animate_multiple_plots('examples/example-bar-and-line-chart.gif',[animated_bar_chart,animated_line_chart],
        enable_progress_bar=True)
    

    示例3

    import pandas_alive
    import pandas as pd
    data_raw = pd.read_csv(
        "https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN.csv"
    )
    list_G7 = [
        "Canada",
        "France",
        "Germany",
        "Italy",
        "Japan",
        "United Kingdom",
        "United States",
    ]
    data_raw = data_raw.pivot(
        index="Year", columns="Entity", values="Life expectancy (Gapminder, UN)"
    )
    data = pd.DataFrame()
    data["Year"] = data_raw.reset_index()["Year"]
    for country in list_G7:
        data[country] = data_raw[country].values
    data = data.fillna(method="pad")
    data = data.fillna(0)
    data = data.set_index("Year").loc[1900:].reset_index()
    data["Year"] = pd.to_datetime(data.reset_index()["Year"].astype(str))
    data = data.set_index("Year")
    animated_bar_chart = data.plot_animated(
        period_fmt="%Y",perpendicular_bar_func="mean", period_length=200,fixed_max=True
    )
    animated_line_chart = data.plot_animated(
        kind="line", period_fmt="%Y", period_length=200,fixed_max=True
    )
    pandas_alive.animate_multiple_plots(
        "examples/life-expectancy.gif",
        plots=[animated_bar_chart, animated_line_chart],
        title="Life expectancy in G7 countries up to 2015",
        adjust_subplot_left=0.2, adjust_subplot_top=0.9, enable_progress_bar=True
    )
    

    示例4

    import geopandas
    import pandas as pd
    import pandas_alive
    import contextily
    import matplotlib.pyplot as plt
    import urllib.request, json
    with urllib.request.urlopen(
        "https://data.nsw.gov.au/data/api/3/action/package_show?id=aefcde60-3b0c-4bc0-9af1-6fe652944ec2"
    ) as url:
        data = json.loads(url.read().decode())
    # Extract url to csv component
    covid_nsw_data_url = data["result"]["resources"][0]["url"]
    # Read csv from data API url
    nsw_covid = pd.read_csv(covid_nsw_data_url)
    postcode_dataset = pd.read_csv("data/postcode-data.csv")
    # Prepare data from NSW health dataset
    nsw_covid = nsw_covid.fillna(9999)
    nsw_covid["postcode"] = nsw_covid["postcode"].astype(int)
    grouped_df = nsw_covid.groupby(["notification_date", "postcode"]).size()
    grouped_df = pd.DataFrame(grouped_df).unstack()
    grouped_df.columns = grouped_df.columns.droplevel().astype(str)
    grouped_df = grouped_df.fillna(0)
    grouped_df.index = pd.to_datetime(grouped_df.index)
    cases_df = grouped_df
    # Clean data in postcode dataset prior to matching
    grouped_df = grouped_df.T
    postcode_dataset = postcode_dataset[postcode_dataset['Longitude'].notna()]
    postcode_dataset = postcode_dataset[postcode_dataset['Longitude'] != 0]
    postcode_dataset = postcode_dataset[postcode_dataset['Latitude'].notna()]
    postcode_dataset = postcode_dataset[postcode_dataset['Latitude'] != 0]
    postcode_dataset['Postcode'] = postcode_dataset['Postcode'].astype(str)
    
    # Build GeoDataFrame from Lat Long dataset and make map chart
    grouped_df['Longitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Longitude'].to_dict())
    grouped_df['Latitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Latitude'].to_dict())
    gdf = geopandas.GeoDataFrame(
        grouped_df, geometry=geopandas.points_from_xy(grouped_df.Longitude, grouped_df.Latitude),crs="EPSG:4326")
    gdf = gdf.dropna()
    
    # Prepare GeoDataFrame for writing to geopackage
    gdf = gdf.drop(['Longitude','Latitude'],axis=1)
    gdf.columns = gdf.columns.astype(str)
    gdf['postcode'] = gdf.index
    gdf.to_file("data/nsw-covid19-cases-by-postcode.gpkg", layer='nsw-postcode-covid', driver="GPKG")
    
    # Prepare GeoDataFrame for plotting
    gdf.index = gdf.postcode
    gdf = gdf.drop('postcode',axis=1)
    gdf = gdf.to_crs("EPSG:3857") #Web Mercator
    
    map_chart = gdf.plot_animated(basemap_format={'source':contextily.providers.Stamen.Terrain},cmap='cool')
    cases_df.to_csv('data/nsw-covid-cases-by-postcode.csv')
    
    from datetime import datetime
    
    bar_chart = cases_df.sum(axis=1).plot_animated(
        kind='line',
        label_events={
            'Ruby Princess Disembark':datetime.strptime("19/03/2020", "%d/%m/%Y"),
            'Lockdown':datetime.strptime("31/03/2020", "%d/%m/%Y")
        },
        fill_under_line_color="blue",
        add_legend=False
    )
    
    map_chart.ax.set_title('Cases by Location')
    grouped_df = pd.read_csv('data/nsw-covid-cases-by-postcode.csv', index_col=0, parse_dates=[0])
    line_chart = (
        grouped_df.sum(axis=1)
        .cumsum()
        .fillna(0)
        .plot_animated(kind="line", period_label=False, title="Cumulative Total Cases", add_legend=False)
    )
    def current_total(values):
        total = values.sum()
        s = f'Total : {int(total)}'
        return {'x': .85, 'y': .2, 's': s, 'ha': 'right', 'size': 11}
    race_chart = grouped_df.cumsum().plot_animated(
        n_visible=5, title="Cases by Postcode", period_label=False,period_summary_func=current_total
    )
    
    import time
    timestr = time.strftime("%d/%m/%Y")
    plots = [bar_chart, line_chart, map_chart, race_chart]
    from matplotlib import rcParams
    rcParams.update({"figure.autolayout": False})
    # make sure figures are `Figure()` instances
    figs = plt.Figure()
    gs = figs.add_gridspec(2, 3, hspace=0.5)
    f3_ax1 = figs.add_subplot(gs[0, :])
    f3_ax1.set_title(bar_chart.title)
    bar_chart.ax = f3_ax1
    
    f3_ax2 = figs.add_subplot(gs[1, 0])
    f3_ax2.set_title(line_chart.title)
    line_chart.ax = f3_ax2
    f3_ax3 = figs.add_subplot(gs[1, 1])
    f3_ax3.set_title(map_chart.title)
    map_chart.ax = f3_ax3
    f3_ax4 = figs.add_subplot(gs[1, 2])
    f3_ax4.set_title(race_chart.title)
    race_chart.ax = f3_ax4
    timestr = cases_df.index.max().strftime("%d/%m/%Y")
    figs.suptitle(f"NSW COVID-19 Confirmed Cases up to {timestr}")
    pandas_alive.animate_multiple_plots(
        'examples/nsw-covid.gif',
        plots,
        figs,
        enable_progress_bar=True
    )

    总结

    Pandas_Alive 是一款非常好玩、实用的动画可视化制图工具,以上就是python机器学习使数据更鲜活的可视化工具Pandas_Alive的详细内容,更多关于python机器学习可视化工具Pandas_Alive的资料请关注易盾网络其它相关文章!

    网友评论