当前位置 : 主页 > 编程语言 > 其它开发 >

走进JUC的世界

来源:互联网 收集:自由互联 发布时间:2022-05-15
概念 同步锁:synchronized、Lock区别 1、 synchronized是不需要进行手动解锁 2、synchronized可以锁方法、锁同步代码块 3、synchronized是Java自带关键字 4、Lock锁是一个类且它拥有synchronized的所有功
概念

同步锁:synchronized、Lock区别

1、synchronized是不需要进行手动解锁

2、synchronized可以锁方法、锁同步代码块

3、synchronized是Java自带关键字

4、Lock锁是一个类且它拥有synchronized的所有功能还具备扩展

5、Lock锁的实现类ReentrantLock可以实现公平和非公平锁

6、Lock锁需要手动加锁和手动解锁

7、synchronized不可中断而Lock锁可以实现中断

  • synchronized

    • 当修饰方法时:锁的是方法调用者(this)
    • 当使用static synchronized修饰方法时,锁的是Class对象(类名.class)
    • 也可以使用代码块方式来锁取Class对象(类名.class)
  • Lock : 主要使用到的实现类ReentrantLock(可重入锁)

    • ReentrantLock() -> 非公平锁(默认)(所谓非公平锁既是可以进行插队操作)
    • ReentrantLock(true) -> 公平锁(所谓公平锁就是需要排队,不可以进行插队操作)

集合的线程不安全情况和解决方案

List : ArrayList不安全List,但是在单线程情况下是高效的!

多线程下错误案例

List<Integer> list = new ArrayList<>();

for (int i = 0; i < 30; i++) {
      final Integer temp = i;
        new Thread(()->{
            list.add(temp);
            System.out.println(list);
       }, String.valueOf(temp)).start();
  }

//结果出现并发修改异常ConcurrentModificationException
[0, 1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 18, 20, 21, 23, 22, 24, 25, 26, 27, 29, 28]
//Exception in thread "11" Exception in thread "15" Exception in thread "19" java.util.ConcurrentModificationException

解决方案

//1.使用集合安全类进行转换
List<Integer> list = Collections.synchronizedList(new ArrayList<>());
        for (int i = 0; i < 30; i++) {
            final Integer temp = i;
            new Thread(()->{
                list.add(temp);
                System.out.println(list);
            }, String.valueOf(temp)).start();
        }
//2.使用List对应的Vector
 List<Integer> list = new Vector<>();
        for (int i = 0; i < 30; i++) {
            final Integer temp = i;
            new Thread(()->{
                list.add(temp);
                System.out.println(list);
            }, String.valueOf(temp)).start();
        }
//3.使用CopyOnWriteArrayList
List<Integer> list = new CopyOnWriteArrayList<>();
        for (int i = 0; i < 30; i++) {
            final Integer temp = i;
            new Thread(()->{
                list.add(temp);
                System.out.println(list);
            }, String.valueOf(temp)).start();
        }

Set集合:HashSet

多线程下错误案例

Set<Integer> set = new HashSet<>();
        for (int i = 0; i < 30; i++) {
            final Integer temp = i;
            new Thread(()->{
                set.add(temp);
                System.out.println(set);
            }, String.valueOf(temp)).start();
        }
// 结果:抛出ConcurrentModificationException并发修改异常!

解决方案:

// 1.使用Collections.synchronizedSet安全集合包装
 Set<Integer> set = Collections.synchronizedSet(new HashSet<>());
// 2.使用CopyOnWriteArraySet
Set<Integer> set = new CopyOnWriteArraySet<>();

map集合:HashMap

Map<String, Object> map = new HashMap<>();
        for (int i = 0; i < 30; i++) {
            final Integer temp = i;
            new Thread(()->{
               map.put(String.valueOf(temp), temp);
                System.out.println(map);
            }, String.valueOf(temp)).start();
        }
//结果:Exception in thread "6" java.util.ConcurrentModificationException并发修改异常

解决方案:

// 1.ConcurrentHashMap
Map<String, Object> map = new ConcurrentHashMap<>();
for (int i = 0; i < 70; i++) {
    final Integer temp = i;
    new Thread(()->{
       map.put(String.valueOf(temp), temp);
        System.out.println(map);
    }, String.valueOf(temp)).start();
}
// 2.Hashtable(效率低)

常用线程辅助类

CountDownLatch(减法计数器)

CountDownLatch countDownLatch = new CountDownLatch(10); // 传入一个数字,要执行多少次
countDownLatch.countDown();  // 每次执行完一个任务后,进行减1操作

countDownLatch.await();  // 等待计数器归零,只有等上面执行次数完毕后,才能执行后面的操作

CyclicBarrier(加法计数器)

CyclicBarrier cyclicBarrier = new CyclicBarrier(10);  // 初始化计数器容量,默认构造Runnable为null


// 当计数器到达10的时候,就执行Runnable里面的具体操作
CyclicBarrier cyclicBarrier = new CyclicBarrier(10, new Runnable() {
            @Override
            public void run() {
                System.out.println("executor other thing!");
            }
        });

cyclicBarrier.await();  // 等待计数器到达初始化计数器值,然后才能执行下面操作!

栗子:

//初始化cyclicBarrier加法计数器
CyclicBarrier cyclicBarrier = new CyclicBarrier(10, new Runnable() {
     @Override
      public void run() {
            System.out.println("执行到第十个啦,完结!");
        }
  });

        for (int i = 1; i <= 10; i++) {
            int u = i;
            new Thread(()->{
                try {
                    System.out.println("执行到第" + u +"个了, 还剩" + (10 - u) + "个");
                    //每执行完一个线程就进行加一操作!当执行完第十个就触发cyclicBarrier初始化中的Runnable接口实现
                    cyclicBarrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }

Semaphore(信号量)

Semaphore : 一般用于限流情况

semaphore.acquire():获得线程使用权限

semaphore.release():释放线程使用权限

        Semaphore semaphore = new Semaphore(2);

        for (int i = 1; i <= 4; i++) {
            new Thread(() -> {
                try {
                    // 得到线程执行权限,当线程数到达了信号量初始化容量,其他线程就会等待(阻塞)当前线程执行完毕并释放执行权限才可继续执行!
                    semaphore.acquire(); 
                    System.out.println("当前线程:" + Thread.currentThread().getName() + "开始执行...");
                    TimeUnit.SECONDS.sleep(2);
                    System.out.println("当前线程:" + Thread.currentThread().getName() + "执行完毕");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    semaphore.release(); //释放线程执行权限
                }

            }, String.valueOf(i)).start();
        }
    }

// 结果
当前线程:1开始执行...
当前线程:2开始执行...
当前线程:1执行完毕
当前线程:2执行完毕
// 到达信号量最大容量,其他线程就进行等待(阻塞)
当前线程:3开始执行...
当前线程:4开始执行...
当前线程:3执行完毕
当前线程:4执行完毕
读写锁

ReadWriteLock

主要使用到:ReentrantReadWriteLock(实现类)

概念

  • 读写锁共存

    • 读 -> 读 可以共存
    • 读 -> 写 不能共存(不能边修改边读取,就会出现读取的数据不正确情况)
    • 写 -> 写 不能共存(可能出现一个线程正在修改原来的值,另一个线程也在修改原来的值,出现两个线程修改后,最后读取的数据不是自己修改的数据)
  • 独占/共享锁

    • 独占锁:也就是写锁,同一时刻只能有一个线程可以对数据进行写的操作
    • 共享锁:也就是读锁,同一时刻可以出现多个线程对数据进行读取的操作,且读取的数据都是同一份数据
//开启两个读写线程,分别进行写和读操作        
for (int i = 0; i < 5; i++) {
            final Integer temp = i;
            new Thread(()->{
                mapDemo.put(String.valueOf(temp), temp + 10000);
            }, "线程->" + String.valueOf(temp)).start();
        }

        for (int i = 5; i < 10; i++) {
            final Integer temp = i;
            new Thread(()->{
                mapDemo.get(String.valueOf(temp));
            }, "线程->" + String.valueOf(temp)).start();
       }

// 初始化读写锁
  private volatile Map<String, Object> map = new ConcurrentHashMap<>();
    private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();


    public void put(String key, Object value) {
        //写入加锁
        readWriteLock.writeLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + "开始写入.....");
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + "写入完毕.....");
        }finally {
            //写完释放锁
            readWriteLock.writeLock().unlock();
        }
    }

    public Object get(String key) {
        //读取加锁
        readWriteLock.readLock().lock();

        Object object = null;
        try {
            System.out.println(Thread.currentThread().getName() + "开始读取----------->");
            object = map.get(key);
            System.out.println(Thread.currentThread().getName() + "读取完成----------->");
        }finally {
		//读取解锁
            readWriteLock.readLock().unlock();
        }
        return object;
    }

// 运行结果:发现写入的时候,总是只有一个线程可以在同一时间进行写入,而读取可以多个线程同时读取
线程->1开始写入.....
线程->1写入完毕.....
线程->0开始写入.....
线程->0写入完毕.....
线程->3开始写入.....
线程->3写入完毕.....
线程->2开始写入.....
线程->2写入完毕.....
线程->4开始写入.....
线程->4写入完毕.....
线程->5开始读取----------->
线程->5读取完成----------->
线程->7开始读取----------->
线程->8开始读取----------->
线程->8读取完成----------->
线程->6开始读取----------->
线程->9开始读取----------->
线程->9读取完成----------->
线程->7读取完成----------->
线程->6读取完成----------->
阻塞队列
  • ArrayBlockingQueue
    • add()与offer()区别:add在超出容量时会抛出异常,而offer则不会抛出异常,而是拒绝添加到队列中!
    • 移除区别(remove()与poll()区别):当队列中无元素时,remove会抛出异常,而poll则是返回null
    • 查看队首(element()与peek()区别):当队列为空时,element会抛出异常,而peek
  ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);   

        arrayBlockingQueue.add("A");
        arrayBlockingQueue.add("B");
        arrayBlockingQueue.add("C");
        arrayBlockingQueue.add("D");
//        arrayBlockingQueue.add("E");
        System.out.println(arrayBlockingQueue);
//结果:
[A, B, C, D]

/**
注意:
1. 当元素超过队列的容量时,就会抛出异常java.lang.IllegalStateException: Queue full
2. 当添加null时,抛出空指针异常 java.lang.NullPointerException
3.使用offer代替add使用
*/
//1.错误案例:容量为4,但是添加了五个元素
        ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);

        arrayBlockingQueue.add("A");
        arrayBlockingQueue.add("B");
        arrayBlockingQueue.add("C");
        arrayBlockingQueue.add("D");
        arrayBlockingQueue.add("E");
        System.out.println(arrayBlockingQueue);
//结果:
Exception in thread "main" java.lang.IllegalStateException: Queue full

//2.错误案例:添加null数据,抛出空指针异常
     ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);

        arrayBlockingQueue.add("A");
        arrayBlockingQueue.add("B");
        arrayBlockingQueue.add("C");
        arrayBlockingQueue.add(null);
        System.out.println(arrayBlockingQueue);
//结果:
Exception in thread "main" java.lang.NullPointerException
    
//3.使用offer代替add添加元素
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);
        arrayBlockingQueue.offer("A");
        arrayBlockingQueue.offer("B");
        arrayBlockingQueue.offer("C");
        arrayBlockingQueue.offer("D");
        arrayBlockingQueue.offer("E");
        System.out.println(arrayBlockingQueue);

//add与offer区别:add在超出容量时会抛出异常,而offer则不会抛出异常,而是拒绝添加到队列中!
//结果:
[A, B, C, D]

  • ArrayBlockingQueue 延迟等待

    //延迟添加等待----------------> offer()
    ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);
    
    System.out.println(arrayBlockingQueue.offer("A"));
    System.out.println(arrayBlockingQueue.offer("B"));
    System.out.println(arrayBlockingQueue.offer("C"));
    System.out.println(arrayBlockingQueue.offer("D"));
    //延迟12秒添加,如果队列已满就返回false(表示添加失败)
    System.out.println(arrayBlockingQueue.offer("E", 12, TimeUnit.SECONDS));
    
    System.out.println(arrayBlockingQueue);
    //结果:
    true
    true
    true
    true
    false
    [A, B, C, D]
        
    // 延迟取出等待-------------> poll()
            ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(4);
    
            arrayBlockingQueue.offer("A");
            arrayBlockingQueue.offer("B");
            arrayBlockingQueue.offer("C");
            arrayBlockingQueue.offer("D");
            arrayBlockingQueue.offer("E", 2, TimeUnit.SECONDS);
    
            System.out.println(arrayBlockingQueue.poll());
            System.out.println(arrayBlockingQueue.poll());
            System.out.println(arrayBlockingQueue.poll());
            System.out.println(arrayBlockingQueue.poll());
            System.out.println(arrayBlockingQueue.poll(2, TimeUnit.SECONDS));
    // 结果:
    A
    B
    C
    D
    //延迟等待2秒钟再弹出,如果队列为空,就返回null
    null
    
  • 同步队列(SynchronousQueue)

    • 特性:只能存储一个对象/值,当存入之后必须等待取出之后才能进行再次存入

栗子:

new Thread(()->{
    try {
        synchronousQueue.put(1);
        System.out.println(Thread.currentThread().getName() + ":put  " + 1);
        synchronousQueue.put(2);
        System.out.println(Thread.currentThread().getName() + ":put  " + 2);
        synchronousQueue.put(3);
        System.out.println(Thread.currentThread().getName() + ":put  " + 3);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } }
        , "put线程:").start();

new Thread(()->{
    try {
        System.out.println(Thread.currentThread().getName() + ":take -> " + synchronousQueue.take());
        System.out.println(Thread.currentThread().getName() + ":take -> " + synchronousQueue.take());
        System.out.println(Thread.currentThread().getName() + ":take -> " + synchronousQueue.take());
    } catch (InterruptedException e) {
        e.printStackTrace();
    } }
        , "take线程:").start();

//结果:
put线程::put  1
take线程::take -> 1
put线程::put  2
take线程::take -> 2
put线程::put  3
take线程::take -> 3
线程池
  • 线程复用(节约了系统资源)

  • 控制最大并发数(当达到线程池容量,就需要等待其他线程完成,才能继续进入)

  • 管理线程

  • Executors线程池

ExecutorService executorService = Executors.newSingleThreadExecutor(); // 单个线程的池子
ExecutorService executorService = Executors.newFixedThreadPool(10); //开启十个固定线程的池子
ExecutorService executorService = Executors.newCachedThreadPool(); //可伸缩线程池, 如果线程池中线程已全被使用就创建新的线程池

newSingleThreadExecutor

ExecutorService executorService = Executors.newSingleThreadExecutor(); // 单个线程的池子
try {
    for (int i1 = 0; i1 < 10; i1++) {
        //执行线程
        executorService.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName() + " 执行了线程..");
            }
        });
    }
} catch (Exception e) {
    e.printStackTrace();
} finally {
    //关闭线程池
    executorService.shutdown();
}
//结果:只有一个线程在重复利用执行
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-1 执行了线程..

newFixedThreadPool

ExecutorService executorService = Executors.newFixedThreadPool(5); //开启十个固定线程的池子
try {
    for (int i = 0; i < 10; i++) {
        //执行线程
        executorService.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName() + " 执行了线程..");
            }
        });
    }
} catch (Exception e) {
    e.printStackTrace();
} finally {
    //关闭线程池
    executorService.shutdown();
}
//结果:五个不同的线程重复使用
pool-1-thread-4 执行了线程..
pool-1-thread-1 执行了线程..
pool-1-thread-4 执行了线程..
pool-1-thread-3 执行了线程..
pool-1-thread-2 执行了线程..
pool-1-thread-5 执行了线程..
pool-1-thread-2 执行了线程..
pool-1-thread-3 执行了线程..
pool-1-thread-4 执行了线程..
pool-1-thread-1 执行了线程..

newCachedThreadPool

ExecutorService executorService = Executors.newCachedThreadPool(); //可伸缩线程池, 如果线程池中线程已全被使用就创建新的线程池

try {
    for (int i = 0; i < 10; i++) {
        //开启线程
        executorService.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName() + " 执行了线程..");
            }
        });
    }
} catch (Exception e) {
    e.printStackTrace();
} finally {
    //关闭线程池
    executorService.shutdown();
}
//结果:开启新线程,当已开启的线程执行完毕,放入池子中又可以进行使用,如果开启的线程都还在执行中,就创建新的线程
pool-1-thread-1 执行了线程..
pool-1-thread-6 执行了线程..
pool-1-thread-5 执行了线程..
pool-1-thread-3 执行了线程..
pool-1-thread-4 执行了线程..
pool-1-thread-2 执行了线程..
pool-1-thread-8 执行了线程..
pool-1-thread-7 执行了线程..
pool-1-thread-9 执行了线程..
pool-1-thread-10 执行了线程..

线程池参数

  • 7大参数
public ThreadPoolExecutor(int corePoolSize,   //核心线程数
                          int maximumPoolSize, //最大线程数
                          long keepAliveTime,  //线程存活时间
                          TimeUnit unit,      //线程时间单元
                          BlockingQueue<Runnable> workQueue) {  //阻塞队列
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory()   //默认线程工厂
         , defaultHandler);   //线程拒绝策略(当达到了最大线程数时,采用线程拒绝策略)
}

Spring自带的任务执行器线程池

@Bean("scheduledTaskExecutor")
public ThreadPoolTaskExecutor scheduledTaskExecutor() {
    ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();  //创建任务执行器线程池
    executor.setCorePoolSize(3);//设置核心线程数
    executor.setMaxPoolSize(5); //设置最大线程数
    executor.setQueueCapacity(1024*100);  //设置一个队列容量
    executor.setThreadNamePrefix("parking-index-task"); //线程名称
    executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); // 拒绝策略
    executor.initialize(); //初始化线程池
    return executor;
}

线程四大拒绝策略应用场景

AbortPolicy: 当队列中线程已满,就抛出异常
DiscardPolicy:当队列满了,就丢弃任务,不会抛出异常
CallerRunsPolicy: 队列已满时,就使用调用者的线程去执行,当处理器关闭就丢弃此线程需求
DiscardOldestPolicy:当队列满了,去尝试和较早的线程竞争,当最早的线程即将执行完成就把当前任务使用即将完成的线程执行

源码解释:
AbortPolicy:
public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         解释:总是把RejectedExecutionException。Params: r—请求执行的可运行任务e—尝试执行该任务的执行器抛出:RejectedExecutionException—always
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }

DiscardPolicy:
    public DiscardPolicy() { }

        /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         解释:什么都不做,这有丢弃任务r的效果。参数:r -请求被执行的可运行任务e -试图执行该任务的执行程序
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
CallerRunsPolicy:
    public CallerRunsPolicy() { }

        /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         解释:在调用者的线程中执行任务r,除非执行器已经关闭,在这种情况下,任务将被丢弃。参数:r—请求执行的可运行任务e—尝试执行该任务的执行程序
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
DiscardOldestPolicy:
    public DiscardOldestPolicy() { }

        /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         解释:获取并忽略执行器将执行的下一个任务(如果有一个任务立即可用),然后重试执行任务r,除非执行器被关闭,在这种情况下,任务r将被丢弃。参数:r—请求执行的可运行任务e—尝试执行该任务的执行程序
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }

Cpu密集型

int availableProcessors = Runtime.getRuntime().availableProcessors();  //获取Cpu核数,适合设置核心线程池的大小

IO密集型

int availableProcessors = Runtime.getRuntime().availableProcessors();   //
int maximumPoolSize = availableProcessors * 2;   // Io密集型一般设置为Cpu核数的两倍,防止
ForkJoin
  • 任务拆分
public class DoMain extends RecursiveTask<Long> {

    private Long start;
    private Long end;
    private final Long threshold = 10_0000_0000L;

    public DoMain(Long start, Long end) {
        this.start = start;
        this.end = end;
    }

    /**
    	递归分解大数据,每次进行两段两段操作
    */
    @Override
    protected Long compute() {
        Long res = 0L;
        if ((end - start) > threshold) {
            Long middle = (end + start) / 2;
            //分两次进行计算
            ForkJoinTask<Long> fork1 = new DoMain(start, middle).fork();
            Long res1 = fork1.join();
            ForkJoinTask<Long> fork2 = new DoMain(middle, end).fork();
            Long res2 = fork2.join();
            res = res1 + res2;
        } else {
            for (Long i = start; i < end; i++) {
                res += i;
            }
        }

        return res;
    }
}

  //这样创建线程不规范,这里只是简易操作!
        new Thread(() -> {
            long l = System.currentTimeMillis();
            DoMain doMain = new DoMain(0L, 500_0000_0000L);
            ForkJoinTask<Long> submit = new ForkJoinPool().submit(doMain);
            try {
                System.out.println("forkJoin输出结果:" + submit.get());
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
            System.out.println("forkJoin所用时间: " + (System.currentTimeMillis() - l));
        }).start();

        //这样创建线程不规范,这里只是简易操作!
        new Thread(() -> {
            long start = System.currentTimeMillis();
            Long res = 0L;
            for (Long i = 0L; i < 500_0000_0000L; i++) {
                res += i;
            }
            System.out.println("普通循环输出结果:" + res);
            System.out.println("普通所用时间" + (System.currentTimeMillis() - start));
        }).start();

计算对比

stream环输出结果: 124999999750000000
stream所用时间2304
普通循环输出结果:124999999750000000
普通所用时间14116
forkJoin输出结果:124999999750000000
forkJoin所用时间: 14468

stream流计算
        new Thread(() -> {
            long start = System.currentTimeMillis();
            long longStream = LongStream.range(0L, 5_0000_0000L).parallel().reduce(0L, Long::sum);
            System.out.println("stream环输出结果: " + longStream);
            System.out.println("stream所用时间" + (System.currentTimeMillis() - start));
        }).start();
volatile
  • 保证了可见性
  • 不保证原子性(也就是多线程情况下,无法保证同一个值被多个线程修改)
  • 保证了禁止指令重排(当程序启动时,它可能并不是按照我们代码的顺序执行,比如初始化,可能就不是按照我们写的代码步骤来的,这就是指令重排,保证指令不重排就可以使用volatile关键字进行声明)
/**
 * 1.使用volatile禁止指令重排
 * 2. 使用AtomicInteger原子类保证是原子操作
 */
public static volatile AtomicInteger num = new AtomicInteger();

public static void main(String[] args) {

    for (int i = 0; i < 20; i++) {
        new Thread(() -> {
            for (int j = 0; j < 1000; j++) {
                //进行加一操作
                num.getAndIncrement();
            }
        }).start();
    }

    //当线程数大于2时,暂停main线程,让给其他线程执行
    while (Thread.activeCount() > 2) {
        Thread.yield();
    }
    System.out.println(num);

原子类操作源码

public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}

	//原子类底层代码,使用了CAS(比较替换算法,也就是自旋锁)
	// compareAndSwapInt底层是调用c++操作内存,对应的是native关键字
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

        return var5;
    }
CAS简单实现

栗子:

@SneakyThrows
public static void main(String[] args) {

    CasLock casLock = new CasLock();

    new Thread(()->{
        try {
            casLock.lock();
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            casLock.unLock();
        }

    }, "Thread1").start();

    TimeUnit.SECONDS.sleep(2);

    new Thread(()->{
        try {
            casLock.lock();
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            casLock.unLock();
        }

    }, "Thread2").start();

}


public static class CasLock {
    AtomicReference<Thread> lock = new AtomicReference<>();

    public void lock() {
        Thread thread = Thread.currentThread();
        if (lock.get() == null) { //拿到泛型中Thread的值进行比较
            System.out.println(thread.getName() + "----> 开始自旋...");
        }

        while (lock.compareAndSet(null, thread)) {

        }
    }

    public void unLock() {
        Thread thread = Thread.currentThread();
        System.out.println(thread.getName() + "----> 解锁成功!");
        //解锁
        lock.compareAndSet(thread, null);
    }

}
上一篇:【Hadoop】5、集群运行
下一篇:没有了
网友评论