当前位置 : 主页 > 编程语言 > 其它开发 >

SETTLE约束算法的批量化处理

来源:互联网 收集:自由互联 发布时间:2022-05-17
在前一篇文章中介绍了SETTLE约束算法在分子动力学模拟中的应用,本文通过用Jax的Vmap功能对SETTLE函数进行了扩维,使得其可以批量的计算多分子体系的约束条件。这里采用的案例是一个
SETTLE约束算法的批量化处理 在前一篇文章中介绍了SETTLE约束算法在分子动力学模拟中的应用,本文通过用Jax的Vmap功能对SETTLE函数进行了扩维,使得其可以批量的计算多分子体系的约束条件。这里采用的案例是一个含有16个水分子(48原子)的小体系,从结果中可以看到,在随机移动和批量SETTLE的作用下,所有的水分子都保留了原始的键长和键角,简单理解这个过程就是一个刚体三角形的平移和旋转的过程。 技术背景

在上一篇文章中,我们介绍了在分子动力学模拟中SETTLE约束算法的实现与应用,其中更多的是针对于单个的水分子。但由于相关代码是通过jax这一框架来实现的,因此对于多分子的体系,可以采用jax所支持的vmap来实现,简单快捷。同时为了模块化的编程,本文中的代码相对于上一篇文章做了函数封装,也更符合jax这种函数化编程的风格。

构建多分子体系

本文使用的是一个16个水分子这样的一个体系,pdb文件内容如下所示:

CRYST1    9.039    7.826    7.379  90.00  90.00  90.00 P 1           1
ATOM      1  O       X   1      10.189 -10.483  -5.440  0.00  0.00           O
ATOM      2  H1      X   1      10.185 -10.473  -4.440  0.00  0.00           H
ATOM      3  H2      X   1       9.374 -10.015  -5.781  0.00  0.00           H
ATOM      4  O       X   1       7.933  -9.186  -6.385  0.00  0.00           O
ATOM      5  H1      X   1       7.115  -9.655  -6.049  0.00  0.00           H
ATOM      6  H2      X   1       7.931  -8.241  -6.059  0.00  0.00           H
ATOM      7  O       X   1       7.929  -6.569  -5.486  0.00  0.00           O
ATOM      8  H1      X   1       7.925  -6.559  -4.486  0.00  0.00           H
ATOM      9  H2      X   1       7.114  -6.101  -5.827  0.00  0.00           H
ATOM     10  O       X   1      10.193  -5.274  -6.412  0.00  0.00           O
ATOM     11  H1      X   1       9.375  -5.741  -6.077  0.00  0.00           H
ATOM     12  H2      X   1      10.191  -4.327  -6.087  0.00  0.00           H
ATOM     13  O       X   1      12.449  -6.569  -5.468  0.00  0.00           O
ATOM     14  H1      X   1      12.445  -6.559  -4.468  0.00  0.00           H
ATOM     15  H2      X   1      11.633  -6.101  -5.809  0.00  0.00           H
ATOM     16  O       X   1      12.453  -9.186  -6.366  0.00  0.00           O
ATOM     17  H1      X   1      11.634  -9.655  -6.031  0.00  0.00           H
ATOM     18  H2      X   1      12.451  -8.241  -6.041  0.00  0.00           H
ATOM     19  O       X   1      10.207 -10.526 -10.053  0.00  0.00           O
ATOM     20  H1      X   1      10.206 -11.466  -9.710  0.00  0.00           H
ATOM     21  H2      X   1      11.022 -10.052  -9.720  0.00  0.00           H
ATOM     22  O       X   1       7.944  -9.212  -9.151  0.00  0.00           O
ATOM     23  H1      X   1       7.940  -9.203  -8.151  0.00  0.00           H
ATOM     24  H2      X   1       8.762  -9.688  -9.477  0.00  0.00           H
ATOM     25  O       X   1       7.947  -6.612 -10.099  0.00  0.00           O
ATOM     26  H1      X   1       7.946  -7.552  -9.756  0.00  0.00           H
ATOM     27  H2      X   1       8.763  -6.138  -9.766  0.00  0.00           H
ATOM     28  O       X   1      10.204  -5.300  -9.179  0.00  0.00           O
ATOM     29  H1      X   1      10.200  -5.290  -8.179  0.00  0.00           H
ATOM     30  H2      X   1      11.021  -5.774  -9.504  0.00  0.00           H
ATOM     31  O       X   1      12.467  -6.612 -10.081  0.00  0.00           O
ATOM     32  H1      X   1      12.466  -7.552  -9.738  0.00  0.00           H
ATOM     33  H2      X   1      13.282  -6.138  -9.748  0.00  0.00           H
ATOM     34  O       X   1      12.464  -9.212  -9.133  0.00  0.00           O
ATOM     35  H1      X   1      12.460  -9.203  -8.133  0.00  0.00           H
ATOM     36  H2      X   1      13.281  -9.687  -9.458  0.00  0.00           H
ATOM     37  O       X   1       5.670 -10.483  -5.458  0.00  0.00           O
ATOM     38  H1      X   1       5.666 -10.473  -4.459  0.00  0.00           H
ATOM     39  H2      X   1       4.854 -10.015  -5.799  0.00  0.00           H
ATOM     40  O       X   1       5.688 -10.526 -10.071  0.00  0.00           O
ATOM     41  H1      X   1       5.687 -11.466  -9.728  0.00  0.00           H
ATOM     42  H2      X   1       6.503 -10.052  -9.738  0.00  0.00           H
ATOM     43  O       X   1       5.674  -5.274  -6.430  0.00  0.00           O
ATOM     44  H1      X   1       4.855  -5.742  -6.095  0.00  0.00           H
ATOM     45  H2      X   1       5.672  -4.328  -6.105  0.00  0.00           H
ATOM     46  O       X   1       5.685  -5.300  -9.197  0.00  0.00           O
ATOM     47  H1      X   1       5.681  -5.290  -8.197  0.00  0.00           H
ATOM     48  H2      X   1       6.502  -5.774  -9.523  0.00  0.00           H
END

有了这样的一个体系之后,当我们需要扩展这个体系,也可以仅把这个体系平移repeat一份即可。

批量处理代码实现

关于这里的算法和代码的解析,还是推荐看下上一篇文章中所讲述的内容,这里就直接展示一下更新之后的代码:

# batch_settle.py
from jax import numpy as np
from jax import vmap, jit

def rotation(psi,phi,theta,v):
    """ Module of rotation in 3 Euler angles. """
    RY = np.array([[np.cos(psi),0,-np.sin(psi)],
                   [0, 1, 0],
                   [np.sin(psi),0,np.cos(psi)]])
    RX = np.array([[1,0,0],
                   [0,np.cos(phi),-np.sin(phi)],
                   [0,np.sin(phi),np.cos(phi)]])
    RZ = np.array([[np.cos(theta),-np.sin(theta),0],
                   [np.sin(theta),np.cos(theta),0],
                   [0,0,1]])
    return np.dot(RZ,np.dot(RX,np.dot(RY,v)))

multi_rotation = jit(vmap(rotation,(None,None,None,0)))

def get_rot(crd):
    """ Get the coordinates transform matrix. """
    # get the center of mass
    com = np.average(crd, 0)
    rc = np.linalg.norm(crd[2]-crd[1])/2
    ra = np.linalg.norm(crd[0]-com)
    rb = np.sqrt(np.linalg.norm(crd[2]-crd[0])**2-rc**2)-ra
    # 3 points are selected to solve the initial rotation matrix
    xyz = [0, 0, 0]
    xyz[0] = crd[0] - com
    xyz[1] = crd[1] - com
    cross = np.cross(crd[2] - crd[1], crd[0] - crd[2])
    cross /= np.linalg.norm(cross)
    xyz[2] = cross
    xyz = np.array(xyz)
    inv_xyz = np.linalg.inv(xyz)
    v0 = np.array([0, -rc, 0])
    v1 = np.array([ra, -rb, 0])
    v2 = np.array([0, 0, 1])
    # final rotation matrix is constructed by following
    Rot = np.array([np.dot(inv_xyz, v0), np.dot(inv_xyz, v1), np.dot(inv_xyz, v2)])
    inv_Rot = np.linalg.inv(Rot)
    return Rot, inv_Rot

def xyzto(Rot, crd, com):
    """ Apply the coordinates transform matrix. """
    return np.dot(Rot, crd-com)

multi_xyzto = jit(vmap(xyzto,(None,0,None)))

def toxyz(Rot, crd, com):
    """ Apply the inverse of transform matrix. """
    return np.dot(Rot, crd-com)

multi_toxyz = jit(vmap(toxyz,(None,0,None)))

def get_circumference(crd):
    """ Get the circumference of all triangles. """
    return np.linalg.norm(crd[0]-crd[1])+np.linalg.norm(crd[0]-crd[2])+np.linalg.norm(crd[1]-crd[2])

jit_get_circumference = jit(get_circumference)

def get_angles(crd_0, crd_t0, crd_t1):
    """ Get the rotation angle psi, phi and theta. """
    com = np.average(crd_0, 0)
    rc = np.linalg.norm(crd_0[2] - crd_0[1]) / 2
    ra = np.linalg.norm(crd_0[0] - com)
    rb = np.sqrt(np.linalg.norm(crd_0[2] - crd_0[0]) ** 2 - rc ** 2) - ra
    phi = np.arcsin(crd_t1[0][2]/ra)
    psi = np.arcsin((crd_t1[1][2]-crd_t1[2][2])/2/rc/np.cos(phi))
    alpha = -rc*np.cos(psi)*(crd_t0[1][0]-crd_t0[2][0])+(-rb*np.cos(phi)-rc*np.sin(psi)*np.sin(phi))*(crd_t0[1][1]-crd_t0[0][1])+ \
            (-rb*np.cos(phi)+rc*np.sin(psi)*np.sin(phi))*(crd_t0[2][1]-crd_t0[0][1])
    beta = -rc*np.cos(psi)*(crd_t0[2][1]-crd_t0[1][1])+(-rb*np.cos(phi)-rc*np.sin(psi)*np.sin(phi))*(crd_t0[1][0]-crd_t0[0][0])+ \
           (-rb*np.cos(phi)+rc*np.sin(psi)*np.sin(phi))*(crd_t0[2][0]-crd_t0[0][0])
    gamma = crd_t1[1][1]*(crd_t0[1][0]-crd_t0[0][0])-crd_t1[1][0]*(crd_t0[1][1]-crd_t0[0][1])+\
        crd_t1[2][1]*(crd_t0[2][0]-crd_t0[0][0])-crd_t1[2][0]*(crd_t0[2][1]-crd_t0[0][1])
    sin_part = gamma/np.sqrt(alpha**2+beta**2)
    theta = np.arcsin(sin_part)-np.arctan(beta/alpha)
    return phi, psi, theta

jit_get_angles = jit(get_angles)

def get_d3(crd_0, psi, phi, theta):
    """ Calculate the new coordinates by 3 given angles. """
    com = np.average(crd_0, 0)
    rc = np.linalg.norm(crd_0[2] - crd_0[1]) / 2
    ra = np.linalg.norm(crd_0[0] - com)
    rb = np.sqrt(np.linalg.norm(crd_0[2] - crd_0[0]) ** 2 - rc ** 2) - ra
    return np.array([[-ra*np.cos(phi)*np.sin(theta), ra*np.cos(phi)*np.cos(theta), ra*np.sin(phi)],
                     [-rc*np.cos(psi)*np.cos(theta)+rb*np.sin(theta)*np.cos(phi)+rc*np.sin(theta)*np.sin(psi)*np.sin(phi),
                      -rc*np.cos(psi)*np.sin(theta)-rb*np.cos(theta)*np.cos(phi)-rc*np.cos(theta)*np.sin(psi)*np.sin(phi),
                      -rb*np.sin(phi)+rc*np.sin(psi)*np.cos(phi)],
                     [rc*np.cos(psi)*np.cos(theta)+rb*np.sin(theta)*np.cos(phi)-rc*np.sin(theta)*np.sin(psi)*np.sin(phi),
                      rc*np.cos(psi)*np.sin(theta)-rb*np.cos(theta)*np.cos(phi)+rc*np.cos(theta)*np.sin(psi)*np.sin(phi),
                      -rb*np.sin(phi)-rc*np.sin(psi)*np.cos(phi)]])

jit_get_d3 = jit(get_d3)

def settle(crd_0, crd_1):
    com_0 = np.average(crd_0, 0)
    com_1 = np.average(crd_1, 0)
    # get the coordinate transform matrix and correspond inverse operation
    rot, inv_rot = get_rot(crd_0)
    crd_t0 = multi_xyzto(rot, crd_0, com_0)
    com_t0 = np.average(crd_t0, 0)
    crd_t1 = multi_xyzto(rot, crd_1, com_1) + com_1
    com_t1 = np.average(crd_t1, 0)
    phi, psi, theta = jit_get_angles(crd_0, crd_t0, crd_t1 - com_t1)
    crd_t3 = jit_get_d3(crd_t0, psi, phi, theta) + com_t1
    com_t3 = np.average(crd_t3, 0)
    crd_3 = multi_toxyz(inv_rot, crd_t3, com_t3) + com_1
    return crd_3

jit_settle = jit(settle)
batch_settle = jit(vmap(settle,(0,0)))

def crd_from_pdb(pdb_name, repeat=0):
    with open(pdb_file) as pdb:
        lines = pdb.readlines()
    length = len(lines)
    atoms = 3
    crd_0 = []
    for i in range(int((length-2)/atoms)):
        this_crd = []
        O = lines[i*atoms+1].split()[5:8]
        this_crd.append([float(xyz) for xyz in O])
        H1 = lines[i * atoms + 2].split()[5:8]
        this_crd.append([float(xyz) for xyz in H1])
        H2 = lines[i * atoms + 3].split()[5:8]
        this_crd.append([float(xyz) for xyz in H2])
        crd_0.append(this_crd)
    crd_0 = np.array(crd_0)
    crd_repeat = crd_0.copy()
    for _ in range(repeat):
        for crd in crd_0:
            crd_repeat = np.append(crd_repeat, (crd+repeat)[None,:], axis=0)
    return crd_repeat

def plot_atoms(crd_0, crd_1, crd_3):
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for batch in range(crd_0.shape[0]):
        x_0 = np.append(crd_0[batch, :, 0], crd_0[batch][0][0])
        y_0 = np.append(crd_0[batch, :, 1], crd_0[batch][0][1])
        z_0 = np.append(crd_0[batch, :, 2], crd_0[batch][0][2])
        ax.plot(x_0, y_0, z_0, color='black')
        x_1 = np.append(crd_1[batch, :, 0], crd_1[batch][0][0])
        y_1 = np.append(crd_1[batch, :, 1], crd_1[batch][0][1])
        z_1 = np.append(crd_1[batch, :, 2], crd_1[batch][0][2])
        ax.plot(x_1, y_1, z_1, color='blue')
        x_3 = np.append(crd_3[batch, :, 0], crd_3[batch][0][0])
        y_3 = np.append(crd_3[batch, :, 1], crd_3[batch][0][1])
        z_3 = np.append(crd_3[batch, :, 2], crd_3[batch][0][2])
        ax.plot(x_3, y_3, z_3, color='red')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    plt.show()

def plot_time_scale(x, y):
    import matplotlib.pyplot as plt
    plt.figure()
    plt.plot(x, y, '-o', color='black')
    plt.show()

if __name__ == '__main__':
    import numpy as onp
    onp.random.seed(0)
    # Read coordinates from pdb file
    pdb_file = 'cell.pdb'
    crd_0 = crd_from_pdb(pdb_file, repeat=0)
    print (crd_0)
    # Construct an initial move
    vel = np.array(onp.random.random(crd_0.shape))
    dt = 1
    # get the unconstraint crd
    crd_1 = crd_0 + vel * dt
    crd_3 = batch_settle(crd_0, crd_1)
    # Plotting
    plot_atoms(crd_0, crd_1, crd_3)

其中主要的改进之处,在于增加了batch_settle = jit(vmap(settle,(0,0)))这样的vmap函数构造形式,其中(0,0)表示的是针对于输入的两个坐标的第0个维度进行扩展。也就是说,只要写一个分子的处理方式,就可以直接用这样的方式把算法推广到多个分子的处理方式上。同时在最外层封装了一个即时编译jit函数,使得整体算法运行的效率更高。该代码运行的结果如下所示:

从结果中我们发现,所有的分子经过settle算法的约束,都回到了原本的键长键角,并且配合velocity-verlet算法可以实现施加约束条件的动力学模拟。这里假如我们调整参数repeat=5,得到的结果如下:

这样我们就得到了一个更大的体系的结果。

总结概要

在前一篇文章中介绍了SETTLE约束算法在分子动力学模拟中的应用,本文通过用Jax的Vmap功能对SETTLE函数进行了扩维,使得其可以批量的计算多分子体系的约束条件。这里采用的案例是一个含有16个水分子(48原子)的小体系,从结果中可以看到,在随机移动和批量SETTLE的作用下,所有的水分子都保留了原始的键长和键角,简单理解这个过程就是一个刚体三角形的平移和旋转的过程。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/batch-settle.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958

参考链接
  1. https://www.cnblogs.com/dechinphy/p/settle.html
“留一手”加剧内卷,“讲不清”浪费时间。
网友评论