1. 创建maven项目 在IDEA中添加scala插件 并添加scala的sdk https: // www.cnblogs.com/bajiaotai/p/15381309.html 2. 相关依赖jar的引入 配置pom.xml2.1 pom.xml 示例 (spark版本: 3.0.0scala版本:2.12) ? xml version="1.0" e
https://www.cnblogs.com/bajiaotai/p/15381309.html2. 相关依赖jar的引入 配置pom.xml 2.1 pom.xml 示例 (spark版本: 3.0.0 scala版本: 2.12)
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.dxm.sparksql</groupId> <artifactId>sparksql</artifactId> <version>1.0-SNAPSHOT</version> <!-- 指定变量 spark的版本信息 scala的版本信息--> <properties> <spark.version>3.0.0</spark.version> <scala.version>2.12</scala.version> </properties> <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-yarn_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.27</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_${scala.version}</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>1.2.1</version> </dependency> </dependencies> </project>2.2 spark版本与scala版本对应关系的问题
#根据下面链接 即可查询 spark版本和scala版本的对应关系及依赖配置2.3 在scala代码中查看运行时的scala版本
https://www.cnblogs.com/bajiaotai/p/16270971.html
println(util.Properties.versionString)2.4 FAQ 因Spark版本和Scala版本不一致导致的报错
待补充3. 代码测试
object TestSparkSQLEnv extends App { //1.初始化 SparkSession 对象 val spark = SparkSession .builder .master("local") //.appName("SparkSql Entrance Class SparkSession") //.config("spark.some.config.option", "some-value") .getOrCreate() //2.通过 SparkSession 获取 SparkContext private val sc: SparkContext = spark.sparkContext //3.设置日志级别 // Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN // This overrides any user-defined log settings //会覆盖掉 用户设置的日志级别 比如 log4j.properties sc.setLogLevel("ERROR") import spark.implicits._ //4.创建DataFream private val rdd2DfByCaseClass: DataFrame = spark.sparkContext .makeRDD(Array(Person("疫情", "何时"), Person("结束", "呢"))) .toDF("名称", "行动") rdd2DfByCaseClass.show() // +----+----+ // |名称|行动| // +----+----+ // |疫情|何时| // |结束| 呢| // +----+----+ //5.关闭资源 spark.stop() }4. 设置日志级别 4.1 运行时日志级别(优先级最高)
//运行时指定 日志级别 (只在提交的Application有效) spark.sparkContext.setLogLevel("INFO")4.2 添加 resources/log4j.properties 配置文件
当不指定时,默认使用 Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Set everything to be logged to the console log4j.rootCategory=info, console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.err log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n # Set the default spark-shell log level to WARN. When running the spark-shell, the # log level for this class is used to overwrite the root logger's log level, so that # the user can have different defaults for the shell and regular Spark apps. log4j.logger.org.apache.spark.repl.Main=WARN # Settings to quiet third party logs that are too verbose log4j.logger.org.sparkproject.jetty=WARN log4j.logger.org.sparkproject.jetty.util.component.AbstractLifeCycle=ERROR log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO # SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs # in SparkSQL with Hive support log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR # Parquet related logging log4j.logger.org.apache.parquet.CorruptStatistics=ERROR log4j.logger.parquet.CorruptStatistics=ERROR5. 结束语
如果能正常执行,恭喜你环境搭建没问题,如果遇到问题请留言共同探讨,如果对您有所帮助,麻烦点赞加评论