当前位置 : 主页 > 编程语言 > 其它开发 >

Linux 0.11源码阅读笔记-内存管理

来源:互联网 收集:自由互联 发布时间:2022-05-30
内存管理 Linux内核使用段页式内存管理方式。 内存池 物理页:物理空闲内存被划分为固定大小(4k)的页 内存池:所有空闲物理页组成内存池,以页为单位进行分配回收。并通过位图
内存管理

Linux内核使用段页式内存管理方式。

  • 内存池

物理页:物理空闲内存被划分为固定大小(4k)的页

内存池:所有空闲物理页组成内存池,以页为单位进行分配回收。并通过位图记录了每个物理页是否空闲,位图下标对应物理页号。

  • 分页内存管理

虚拟页:进程虚地址空间被划分为固定大小(4k)的页

分页内存管理:通过页目录和页表维护进程虚拟页号到物理页号的映射。设置好页目录、页表之后,虚拟地址到物理地址之间的转换通过内存管理单元(MMU)自动完成转换。若访问的虚拟页没有实际分配物理页,则放生缺页中断,内核会为其分配物理页。

  • 分段内存管理

分段:进程虚地址空间被划分为多个逻辑段,代码段、数据段、栈段等,每个段有一个段号。进程代码不直接使用虚拟地址,而是段号+段内偏移的二维逻辑地址。

分段内存管理:通过段表维护每个段的信息,段表项包括段基址和段限长。设置好段表之后,段号+段内偏移二维逻辑地址到虚拟线性地址的转换由MMU单元自动完成。

  • 相关代码文件

page.s:仅包含内存缺页中断处理程序

memory.c:内存管理的核心文件,用于内存池的初始化操作、页目录和页表的管理和内核其他部分对内存的申请处理过程。

物理内存管理

除去以被内核占用的内存外,剩余为占用内存会使用内存池进行管理,用于动态的分配和回收。

image

内存池初始化

mem_init初始化空闲内存。将空闲内存划分为4k大小页,并在位图mem_map中标记为空闲。位图中还包含物理页的引用计数,支持内存共享机制。

void mem_init(long start_mem, long end_mem)
{
	int i;

	HIGH_MEMORY = end_mem;
    
    # 在位图中,设置所有页面为占用状态
	for (i=0 ; i<PAGING_PAGES ; i++)
		mem_map[i] = USED;

    # 在位图中,将内核未使用的空闲页面设置为空闲状态,start_mem为空闲内存起始地址
	i = MAP_NR(start_mem);		// 主内存区起始位置处页面号
	end_mem -= start_mem;
	end_mem >>= 12;             // 主内存区中的总页面数
	while (end_mem-->0)
		mem_map[i++]=0;         // 主内存区页面对应字节值清零
}
内存分配回收

内核代码通过get_free_page和free_page函数分配和回收物理内存页。

  • 分配

get_free_page函数用于分配物理页。在位图中查找空闲物理页,并标记为占用,然后返回一个空闲的页物理地址。

// 不要陷入代码细节
unsigned long get_free_page(void)
{
register unsigned long __res asm("ax");

__asm__("std ; repne ; scasb\n\t"   // 置方向位,al(0)与对应每个页面的(di)内容比较
	"jne 1f\n\t"                    // 如果没有等于0的字节,则跳转结束(返回0).
	"movb $1,1(%%edi)\n\t"          // 1 => [1+edi],将对应页面内存映像bit位置1.
	"sall $12,%%ecx\n\t"            // 页面数*4k = 相对页面其实地址
	"addl %2,%%ecx\n\t"             // 再加上低端内存地址,得页面实际物理起始地址
	"movl %%ecx,%%edx\n\t"          // 将页面实际其实地址->edx寄存器。
	"movl $1024,%%ecx\n\t"          // 寄存器ecx置计数值1024
	"leal 4092(%%edx),%%edi\n\t"    // 将4092+edx的位置->dei(该页面的末端地址)
	"rep ; stosl\n\t"               // 将edi所指内存清零(反方向,即将该页面清零)
	"movl %%edx,%%eax\n"            // 将页面起始地址->eax(返回值)
	"1:"
	:"=a" (__res)
	:"0" (0),"i" (LOW_MEM),"c" (PAGING_PAGES),
	"D" (mem_map+PAGING_PAGES-1)
	);
return __res;           // 返回空闲物理页面地址(若无空闲页面则返回0).
}
  • 回收

free_page函数用于释放物理页。释放物理地址addr处的物理页,并在位图中标记为未占用状态。

void free_page(unsigned long addr)
{
    // 判断地址是否在合法范围内
	if (addr < LOW_MEM) return;
	if (addr >= HIGH_MEMORY)
		panic("trying to free nonexistent page");

	addr -= LOW_MEM;
	addr >>= 12;
	if (mem_map[addr]--) return;
	mem_map[addr]=0;
	panic("trying to free free page");
}
分页内存管理
  • 多级页表

多级页表用于实现虚拟页到物理页的映射,进程基于多级页表管理其占用的物理内存页。

使用单级页表实现虚拟页到物理页的映射会浪费较多的内存空间,将单级页表划分为固定的大小(4k)的页表,并使用页目录登记页表,从而实现两级页表,进一步可实现多级页表。使用多级页表的好处在于节省空闲页表占用的内存空间,当4k大小页表没有页项使用时,可以不为其申请内存空间。

image

  • 线性虚拟地址翻译

线性地址可以划分为页目录项、页表项、页内偏移。

页目录项:作为下标访问页目录表项,表项记录页表信息

页表项:作为下标访问页表项,也表项记录物理页信息

页内偏移:作为物理页内偏移访问具体的物理地址单元

image

  • 复制页表

copy_page_tables函数用于复制当前进程的页目录和页表。首先会申请内存作为页目录和也表的存储空间,然后进行复制,复制后的两个进程的目标共享实际物理内存。fork新进程程时,会调用该函数为新进程从原进程复制页表。

int copy_page_tables(unsigned long from,unsigned long to,long size)
{
	unsigned long * from_page_table;
	unsigned long * to_page_table;
	unsigned long this_page;
	unsigned long * from_dir, * to_dir;
	unsigned long nr;

	if ((from&0x3fffff) || (to&0x3fffff))
		panic("copy_page_tables called with wrong alignment");
	from_dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
	to_dir = (unsigned long *) ((to>>20) & 0xffc);
	size = ((unsigned) (size+0x3fffff)) >> 22;

    // 第一层循环处理页目录
	for( ; size-->0 ; from_dir++,to_dir++) {
		if (1 & *to_dir)
			panic("copy_page_tables: already exist");
		if (!(1 & *from_dir))
			continue;
        
		from_page_table = (unsigned long *) (0xfffff000 & *from_dir);
		if (!(to_page_table = (unsigned long *) get_free_page()))
			return -1;	/* Out of memory, see freeing */
		*to_dir = ((unsigned long) to_page_table) | 7;
		nr = (from==0)?0xA0:1024;
       
        // 第二层循环处理页表
		for ( ; nr-- > 0 ; from_page_table++,to_page_table++) {
			this_page = *from_page_table;
			if (!(1 & this_page))
				continue;
			this_page &= ~2;
			*to_page_table = this_page;
            
			if (this_page > LOW_MEM) {
				*from_page_table = this_page;
				this_page -= LOW_MEM;
				this_page >>= 12;
				mem_map[this_page]++;	//增加物理页引用计数
			}
		}
	}
	invalidate();
	return 0;
}
  • 分配物理页

put_page函数为指定虚拟页分配物理页,并在页表中登记映射关系。

//为进程虚页分配分配物理页,主要过程
//1. 调用get_free_page分配一个物理页
//2. 调用put_page在页表中修改页项,建立虚页到物理页的映射
void get_empty_page(unsigned long address)
{
	unsigned long tmp;

    // 如果不能取得有一空闲页面,或者不能将所取页面放置到指定地址处,则显示内存不够信息。
	if (!(tmp=get_free_page()) || !put_page(tmp,address)) {
		free_page(tmp);		/* 0 is ok - ignored */
		oom();
	}
}

//将物理页映射到地址address中
unsigned long put_page(unsigned long page,unsigned long address)
{
	unsigned long tmp, *page_table;

/* NOTE !!! This uses the fact that _pg_dir=0 */
	if (page < LOW_MEM || page >= HIGH_MEMORY)
		printk("Trying to put page %p at %p\n",page,address);
	if (mem_map[(page-LOW_MEM)>>12] != 1)
		printk("mem_map disagrees with %p at %p\n",page,address);
    
	page_table = (unsigned long *) ((address>>20) & 0xffc);
	if ((*page_table)&1)
		page_table = (unsigned long *) (0xfffff000 & *page_table);
	else {
		if (!(tmp=get_free_page()))
			return 0;
		*page_table = tmp|7;
		page_table = (unsigned long *) tmp;		
	}
    
	page_table[(address>>12) & 0x3ff] = page | 7;	//登记页表项
/* no need for invalidate */
	return page;
}
  • 释放物理页

free_page_tables函数释放连续一到多个虚拟页,并修改页表。

int free_page_tables(unsigned long from,unsigned long size)
{
	unsigned long *pg_table;
	unsigned long * dir, nr;

	if (from & 0x3fffff)
		panic("free_page_tables called with wrong alignment");
	if (!from)
		panic("Trying to free up swapper memory space");
	size = (size + 0x3fffff) >> 22;
	dir = (unsigned long *) ((from>>20) & 0xffc); /* _pg_dir = 0 */
    
	for ( ; size-->0 ; dir++) {
		if (!(1 & *dir))
			continue;
		pg_table = (unsigned long *) (0xfffff000 & *dir);  // 取页表地址
		for (nr=0 ; nr<1024 ; nr++) {
			if (1 & *pg_table)                          // 若该项有效,则释放对应页。 
				free_page(0xfffff000 & *pg_table);
			*pg_table = 0;                              // 该页表项内容清零。
			pg_table++;                                 // 指向页表中下一项。
		}
		free_page(0xfffff000 & *dir);                   // 释放该页表所占内存页面。
		*dir = 0;                                       // 对应页表的目录项清零
	}
	invalidate();                                       // 刷新页变换高速缓冲。
	return 0;
}
分段内存管理

虚拟内存被划分为多个逻辑段,代码段、只读数据段等,不同数据段的属性不同,方便管理和保护安全。

全局描述符表(GDT)和局部描述符表(LDT)用于记录段信息,包含段基址和段限长等。GDT用于记录内核使用的各种数据段,仅有一个;LDT用于记录进程使用的各种数据段,一个进程对应一个。

寄存器GDTR和LDTR分别用于存储GDT首地址和当前运行进程的LDT首地址。运行于用户态时,地址翻译使用LDTR寄存器指向的进程段表;运行于内核态时,地址翻译使用LDTR寄存器指向的内核段表。

image

段页式内存管理

前面分别介绍了分页内存管理和分段内存管理,及两者各自地址翻译过程,此处总结linux段页式内存翻译的整个流程,并介绍一些相关的寄存器和TLB快表。

地址翻译过程主要分为两个部分:段+偏移二维逻辑地址转化为虚拟线性地址;虚拟线性地址转化为物理地址。第一部分翻译过程依赖数据结构GDT或LDT,其中记录了段信息;第二部分翻译过程依赖页表数据结构,记录了虚拟页到物理页的映射关系,CR3寄存器存储当前进程页目录地址。

  • MMU:设置好寄存器GDTR、LDTR、CR3寄存器后,MMU内存管理单元只懂执行地址翻译过程。

  • TLB:多级页表导致地址翻译过程较慢,使用TLB快表可缓存页表项,加快地址翻译过程。

image

页面出错异常

缺页或者写时拷贝会都会引起页面出错异常(page_fault int14),但错处码不同。page_fault中断处理函数根据出错码调用do_no_page处理缺页中断,或者调用do_wp_page处理写时拷贝。

缺页处理

进程访问虚地址内存时,若未分配物理内存,将导致页面出错异常(page_fault int14),并调用异常处理函数do_no_page()

do_no_page将为虚拟页分配物理页,并从磁盘调入相应数据(若该虚页对应磁盘数据)。

void do_no_page(unsigned long error_code,unsigned long address)
{
	int nr[4];
	unsigned long tmp;
	unsigned long page;
	int block,i;

	address &= 0xfffff000;
	tmp = address - current->start_code;

	if (!current->executable || tmp >= current->end_data) {
		get_empty_page(address);
		return;
	}
	if (share_page(tmp))
		return;
	if (!(page = get_free_page()))
		oom();

    //执行映像文件中(外存中),读入内存块对应的数据
    /* remember that 1 block is used for header */
	block = 1 + tmp/BLOCK_SIZE;
	for (i=0 ; i<4 ; block++,i++)
		nr[i] = bmap(current->executable,block);
	bread_page(page,current->executable->i_dev,nr);
    
    //文件末尾数据可能不足一个内存块,剩下的内存空间清0
	i = tmp + 4096 - current->end_data;
	tmp = page + 4096;
	while (i-- > 0) {
		tmp--;
		*(char *)tmp = 0;
	}
    // 最后把引起缺页异常的一页物理页面映射到指定线性地址address处。若操作成功
    // 就返回。否则就释放内存页,显示内存不够。
	if (put_page(page,address))
		return;
	free_page(page);
	oom();
}
写时拷贝

fork新进程时,父子进程共享相同的物理内存页,并设置共享内存页只读。当父子进程中的一个写共享内存时,将导致页面出错异常(page_fault int14),并调用异常处理函数do_wp_page()处理。

do_wp_page会对共享内存页取消共享,并复制出一个新的内存页,使用父子进程各拥有一份自己的物理页面,可正常读写。

void do_wp_page(unsigned long error_code,unsigned long address)
{
#if 0
/* we cannot do this yet: the estdio library writes to code space */
/* stupid, stupid. I really want the libc.a from GNU */
	if (CODE_SPACE(address))
		do_exit(SIGSEGV);
#endif
    // 调用上面函数un_wp_page()来处理取消页面保护。
	un_wp_page((unsigned long *)
		(((address>>10) & 0xffc) + (0xfffff000 &
		*((unsigned long *) ((address>>20) &0xffc)))));

}

// 取消保护页函数
void un_wp_page(unsigned long * table_entry)
{
	unsigned long old_page,new_page;

	old_page = 0xfffff000 & *table_entry;
	if (old_page >= LOW_MEM && mem_map[MAP_NR(old_page)]==1) {
		*table_entry |= 2;
		invalidate();
		return;
	}
    
	if (!(new_page=get_free_page()))	//分配新页
		oom();
	if (old_page >= LOW_MEM)
		mem_map[MAP_NR(old_page)]--;
	*table_entry = new_page | 7;
	invalidate();
	copy_page(old_page,new_page);		//复制物理页
}
【转自:韩国服务器 http://www.yidunidc.com 欢迎留下您的宝贵建议】
上一篇:JS JSON格式化打印:JSON.stringify方法
下一篇:没有了
网友评论