当前位置 : 主页 > 编程语言 > python >

ORM之SQLAlchemy

来源:互联网 收集:自由互联 发布时间:2022-06-15
在python中操作数据库,最常见的方式是使用SQLAlchemy,我们来了解一下它的具体使用 安装: pip3 install sqlalchemy 基础使用: # 导入: from sqlalchemy import Column, String, create_engine from sqlalchemy.o

 在python中操作数据库,最常见的方式是使用SQLAlchemy,我们来了解一下它的具体使用

 

  安装:

pip3 install sqlalchemy

 

  基础使用:

# 导入:
from sqlalchemy import Column, String, create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

# 创建对象的基类:
Base = declarative_base()

# 定义User对象:
class User(Base):
# 表的名字:
__tablename__ = 'user'

# 表的结构:
id = Column(String(20), primary_key=True)
name = Column(String(20))

# 初始化数据库连接:
engine = create_engine('mysql+pymysql://root:password@localhost:3306/test', echo=True)
# 创建DBSession类型:
DBSession = sessionmaker(bind=engine)



初始化数据库连接:
'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名?charset=utf8'
  这里的数据库驱动名称可省略 '数据库类型://用户名:口令@机器地址:端口号/数据库名?charset=utf8'echo参数为True时,会显示每条执行的SQL语句,可以关闭,

2020-02-29 14:58:26,843 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'sql_mode'
2020-02-29 14:58:26,843 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,845 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'lower_case_table_names'
2020-02-29 14:58:26,845 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,846 INFO sqlalchemy.engine.base.Engine SELECT DATABASE()
2020-02-29 14:58:26,846 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,847 INFO sqlalchemy.engine.base.Engine show collation where `Charset` = 'utf8mb4' and `Collation` = 'utf8mb4_bin'
2020-02-29 14:58:26,847 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,849 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS CHAR(60)) AS anon_1
2020-02-29 14:58:26,849 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,849 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS CHAR(60)) AS anon_1
2020-02-29 14:58:26,849 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,850 INFO sqlalchemy.engine.base.Engine SELECT CAST('test collated returns' AS CHAR CHARACTER SET utf8mb4) COLLATE utf8mb4_bin AS anon_1
2020-02-29 14:58:26,850 INFO sqlalchemy.engine.base.Engine {}
2020-02-29 14:58:26,851 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2020-02-29 14:58:26,852 INFO sqlalchemy.engine.base.Engine SELECT user.id AS user_id, user.name AS user_name, user.password AS user_password, user.create_time AS user_create_time
FROM user
WHERE user.id = %(id_1)s
2020-02-29 14:58:26,852 INFO sqlalchemy.engine.base.Engine {'id_1': 1}

   


 

  添加:

# 创建session对象:
session = DBSession()
# 创建新User对象:
new_user = User(id='5', name='Bob')
# 添加到session:
session.add(new_user)
# 提交即保存到数据库:
session.commit()
# 关闭session:
session.close()

 

  添加多条:

# 添加多条记录
user1 = User(name='xing1', password='111111')
user2 = User(name='xing2', password='222222')
user3 = User(name='xing3', password='333333')


session.add_all([user1, user2, user3])
session.commit()
session.close()

 


 

  查询:

# 创建Session:
session = DBSession()
# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:
user = session.query(User).filter(User.id=='5').one()
# 打印类型和对象的name属性:
print('type:', type(user))
print('name:', user.name)
# 关闭Session:
session.close()


说明:
all() 返回一个列表 可以通过遍历列表来获取每个对象。

one() 返回且仅返回一个查询结果。当结果的数量不足一个或者多于一个时会报错

first() 返回至多一个结果,而且以单项形式,而不是只有一个元素的tuple形式返回这个结果
get(1) 返回一个结果 通过主键查询

 

  过滤条件:

from sqlalchemy import func使用filter 或者filter_by
filter 需要使用User.name 方式指定筛选条件,filter_by只通过字段名称即可


filter_by最后的结果就是一个sql语句,我们排错的时候就可以通过这个来排查我们sql是否正确


常用筛选条件:

equals:
query(Student).filter(Student.id == 10001)
not equals:
query(Student).filter(Student.id != 100)
LIKE:
query(Student).filter(Student.name.like(“%feng%”))

IN:
query(Student).filter(Student.name.in_(['feng', 'xiao', 'qing']))
not in
query(Student).filter(~Student.name.in_(['feng', 'xiao', 'qing']))

is null
query(Student).filter(Student.count==none).all()is not nullquery(Student).filter(Student.count!=none).all()AND:
from sqlalchemy import and_
query(Student).filter(and_(Student.name == 'fengxiaoqing', Student.id ==10001))

或者
query(Student).filter(Student.name == 'fengxiaoqing').filter(Student.address == 'chengde')

OR:
from sqlalchemy import or_
query.filter(or_(Student.name == 'fengxiaoqing', Student.age ==18))

包含:
session.query(Staff).filter(Staff.name.contains("a")).all()

区间:
session.query(Staff).filter(Staff.id.between(1,2)).all()

字段筛选:users = session.query(User.id, User.name).all()
for user in users:
print(user.id, user.name)去重:users = session.query(User.password).distinct().all()
for user in users:
print(user.password)filter_by 不支持组合查询,只能连续调用filter来变相实现。
filter_by的参数是**kwargs,直接支持组合查询。user = session.query(User).filter_by(name = 'xing1').filter_by(password = '111111').one()

 

  关联查询:

1)查询 gameuid 1000 账号下绑定的所有帐号

print(db.session.query(Bind.bindid, Bind.fromid, Bind.toid, Account.gameuid, Account.nickname). \
filter(Bind.toid == 1000). \
filter(Bind.fromid == Account.gameuid))
SELECT bind.bindid AS bind_bindid, bind.fromid AS bind_fromid, bind.toid AS bind_toid, account.gameuid AS account_gameuid, account.nickname AS account_nickname
FROM bind, account
WHERE bind.toid = %(toid_1)s AND bind.fromid = account.gameuid

这里的联表查询使用的是 WHERE 语句。如果希望使用 JOIN 语句,可以这样写:
print(db.session.query(Bind.bindid, Account.gameuid, Account.nickname). \
join(Account, Account.gameuid==Bind.fromid). \
filter(Bind.toid == 1000))
SELECT bind.bindid AS bind_bindid, bind.fromid AS bind_fromid, account.gameuid AS account_gameuid, account.nickname AS account_nickname
FROM bind INNER JOIN account ON account.gameuid = bind.fromid
WHERE bind.toid = %(toid_1)s
query 中参数的顺序很重要,第一个参数所代表的 table 就是 JOIN 时放在前面的那个 table。因此,此处 JOIN 的目标应该是 Account, 而不应该是 Bind 自身。

  

另外 一种关联查询

在 Flask-SQLAlchemy 提供的 Model 对象中,可以使用 Model.query 这样的语法来直接得到一个查询对象,这是由于 Flask-SQLAlchemy 中存在一个 _QueryProperty 类,每次调用 Model.__get__ 时,会自动生成一个基于当前 session 的 query 对象

>>> Account.query.join(Bind, Bind.fromid == Account.gameuid).filter(Bind.toid == 1000).all()
[, , , , , , , , , , ]

SELECT account.gameuid AS account_gameuid, account.nickname AS account_nickname
FROM account INNER JOIN bind ON bind.fromid = account.gameuid
WHERE bind.toid = %(toid_1)s

使用 Model.query 得到的这个 query 对象可以直接进行 JOIN 操作,得到的结果是 Model 对象。这样就方便多了
可以看出,这样的查询结果和使用 db.session.query 并没有什么不同。由于返回的是 Model 对象,使用上可能还更加方便了

  

条件筛选:
>>> Account.query.join(Bind, Bind.fromid == Account.gameuid). \
filter(Bind.toid == 1000). \
with_entities(Bind.bindid, Account.nickname).all()
[(2, '玩家10001'), (3, '玩家10002'), (4, '玩家10003'), (5, '玩家10004'), (6, '玩家10005'), (7, '玩家10006'), (8, '玩家10007'), (9, '玩家10008'), (10, '玩家10009'), (53, '玩家10000'), (54, '玩家11000')]
>>>
注意,列表中的项 (2, '玩家10001') 并不是标准的 Python tuple。你如果查看它的类型,会发现一个奇怪的名称: 。它是一个 AbstractKeyedTuple 对象,拥有一个 keys() 方法,这样可以很容易将其转换成 dict :
>>> results = Account.query.join(Bind, Bind.fromid == Account.gameuid). \
filter(Bind.toid == 1000). \
with_entities(Bind.bindid, Account.nickname).all()
>>> [dict(zip(result.keys(), result)) for result in results]
[{'bindid': 2, 'nickname': '玩家10001'}, {'bindid': 3, 'nickname': '玩家10002'}, {'bindid': 4, 'nickname': '玩家10003'}, {'bindid': 5, 'nickname': '玩家10004'}, {'bindid': 6, 'nickname': '玩家10005'}, {'bindid': 7, 'nickname': '玩家10006'}, {'bindid': 8, 'nickname': '玩家10007'}, {'bindid': 9, 'nickname': '玩家10008'}, {'bindid': 10, 'nickname': '玩家10009'}, {'bindid': 53, 'nickname': '玩家10000'}, {'bindid': 54, 'nickname': '玩家11000'}]



除了筛选字段外,还可以用另一个方法获取多个 Model 的记录。那就是,返回两个 Model 的所有字段
>>> db.session.query(Account, Bind).join(Bind, Account.gameuid==Bind.fromid).filter(Bind.toid==1000).all()
[(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )]

使用上面的语法直接返回 Account 和 Bind 对象,可以进行更加灵活的操作

 

  join默认是一种内连接 , 也就是inner join, 还有外连接

member = db.session.query(
AppMember.member_nickname, WxGuestLogin.headimgurl, AppMember.member_phone,
AppMemberExt.vip_id, AppMemberExt.vip_end_time, AppMemberVip.name) \
.outerjoin(WxGuestLogin, AppMember.wxmp_openid == WxGuestLogin.wxmp_openid) \
.outerjoin(AppMemberExt, AppMember.id == AppMemberExt.uid) \
.outerjoin(AppMemberVip, AppMemberExt.vip_id == AppMemberVip.id) \
.filter(AppMember.id == g.uid).first()

# outerjoin 外部链接 左连接



 

  更新:

my_stdent = session.query(Student).filter(Student.id == 1002).first()
my_stdent.name = "lanlang"
session.commit()
session.close()

  批量更新: 

AppOrder.query.filter(AppOrder.id.in_(order_ids)).update({'is_deducted': 1}, synchronize_session='fetch')
db.session.commit()



 

  删除:

user = session.query(User).filter_by(name='xing3').delete()
session.commit()
session.close()

 

 


 

 

  取数: count

user_total = session.query(User).count()

 

  分组: group_by

user_states = session.query(User).group_by(User.password).all()
for state in user_states:
print(state.id, state.name, state.password)

 

  排序:order_by

users = session.query(User).order_by(User.id.desc()).all()
for user in users:
print(user.name)

 

 

  统计: sum

total = session.query(User).with_entities(func.sum(User.id)).scalar()

或者

total = session.query(func.sum(User.id)).scalar()

 

 

  平均值:avg

avg = session.query(func.avg(User.id)).scalar()

 

 


 

除了直接操作sqlalchemy,在框架中是如果操作的呢? 例如:flask中 是使用的Flask_sqlalchemy.操作上稍有不同支持

  查询操作:

模糊匹配
Staff.query.filter(Staff.name.like("%a%")).all()

不等于
Staff.query.filter(Staff.id!=1).all()

大于,小于
Staff.query.filter(Staff.id>1,Staff.score>1).all()


Staff.query.filter(or_(Staff.id>1, Staff.score<4)).all()

包含
Staff.query.filter(Staff.name.contains("a")).all()

区间
Staff.query.filter(Staff.id.between(1,2)).all()


Staff.query.filter(and_(Staff.id>1, Staff.score>2)).all()

字段筛选
Staff.query.with_entities(Staff.name, Staff.id).all()
[(1, 'aa'), (2, 'bb')]

去重
Staff.query.with_entities(Staff.name).distinct().all()
[('aa',), ('bb',)]

 


 

  事务处理:

示例:

from functools import wraps
from contextlib import ContextDecorator

'''
示例程序:
创建一个新用户,同时将新用户关联到一家公司下,
这需要两步数据库操作,但是这应该是一个事务,
要么都完成,要么都未完成
注意:即使只有一步,也需要如下操作
flush和commit区别:
> flush: 写数据库,但不提交,也就是事务未结束
> commit: 是先调用flush写数据库,然后提交,结束事务,并开始新的事务

'''

def create_user(name, phone):
data = {
'name': name,
'phone': phone,
}
user = User(name)
db.session.add(user)
db.session.flush()
return user

def create_user_and_company_mapping(user_id, commpany_id):
data = {
'user_id': user_id,
'company_id': company_id,
}
mapping = UserCompanyMapping(**data)
db.session.add(mapping)
db.session.flush()
return mapping

class CreateUser(Api):

def post(self, params):
name = params['name']
phone = params['phone']
company_id = params['company_id']
# 这里用with语句将两个操作封闭成一个原子操作
with atomic(db):
user = create_user(name, phone)
create_user_and_company_mapping(user.id, company_id)
# 注意:即使只有一步创建用户的操作也需要这样写
with atomic(db)
user = create_user(name, phone)


def atomic(db):
if callable(db):
return Atomic(db)(db)
else:
return Atomic(db)


class Atomic(ContextDecorator):

def __init__(self, db):
self.db = db

def __enter__(self):
pass

def __exit__(self, exc_typ, exc_val, tb):
if exc_typ:
self.db.session.rollback()
else:
self.db.session.commit()

 

其他配置项:

1, 想要查看具体的SQL语句

SQLAlchemy打开SQL语句方法如下,echo=true将开启该功能:
engine = create_engine(“”, echo=True)

Flask-SQLAlchemy打开SQL方法如下:
app.config[“SQLALCHEMY_ECHO”] = True

 


上一篇:pip之加速
下一篇:没有了
网友评论