1.返回函数
函数作为返回值
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
def calc_sum(*args):ax = 0
for n in args:
ax = ax + n
return ax
但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:
>>> f = lazy_sum(1, 3, 5, 7, 9)>>> f
调用函数f时,才真正计算求和的结果:
>>> f()25
在这个例子中,我们在函数lazy_sum中又定义了函数sum,并且,内部函数sum可以引用外部函数lazy_sum的参数和局部变量,当lazy_sum返回函数sum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
>>> f1 = lazy_sum(1, 3, 5, 7, 9)>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
f1()和f2()的调用结果互不影响。
闭包
注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:
def count():fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果是:
>>> f1()9
>>> f2()
9
>>> f3()
9
全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
再看看结果:
>>> f1, f2, f3 = count()>>> f1()
1
>>> f2()
4
>>> f3()
9
缺点是代码较长,可利用lambda函数缩短代码。
小结
一个函数可以返回一个计算结果,也可以返回一个函数。
返回一个函数时,牢记该函数并未执行,返回函数中不要引用任何可能会变化的变量。
2.匿名函数
当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。
在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:
>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))[1, 4, 9, 16, 25, 36, 49, 64, 81]
通过对比可以看出,匿名函数lambda x: x * x实际上就是:
def f(x):return x * x
关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x>>> f
25
同样,也可以把匿名函数作为返回值返回,比如:
def build(x, y):return lambda: x * x + y * y
小结
Python对匿名函数的支持有限,只有一些简单的情况下可以使用匿名函数。