当前位置 : 主页 > 编程语言 > python >

【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码

来源:互联网 收集:自由互联 发布时间:2022-06-15
1 简介 准确的电池荷电状态(SOC)估计是电动车辆正常工作的基本前提.针对目前电池荷电状态估计时存在的非线性,不平稳等干扰因素的影响,本工作提出了基于灰狼优化算法的极限学习机

1 简介

准确的电池荷电状态(SOC)估计是电动车辆正常工作的基本前提.针对目前电池荷电状态估计时存在的非线性,不平稳等干扰因素的影响,本工作提出了基于灰狼优化算法的极限学习机的锂离子电池SOC估计方法,以提高估计精度并缩短估计时长.传统的极限学习机(ELM)直接随机生成模型参数,并对SOC进行估计,该方法运行速度快且泛化性能好.但极限学习机需要找出最优的隐含层神经元参数才能达到较高的精度.因此,通过灰狼优化算法(GWO)进一步优化模型参数,并通过选择合适的激活函数,弥补了传统极限学习机的不足.

【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码_优化算法

【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码_d3_02

2 部分代码

%___________________________________________________________________%
%
%___________________________________________________________________%
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
r1=rand();
r2=rand();
A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2
r1=rand();
r2=rand();
A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end

3 仿真结果


【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码_d3_03

【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码_优化算法_04编辑

4 参考文献

[1]王桥, 魏孟, 叶敏,等. 基于灰狼算法优化极限学习机的锂离子电池SOC估计[J]. 储能科学与技术, 2021.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【ELM预测】基于灰狼算法优化极限学习机预测附matlab代码_d3_05


上一篇:Python--发送邮件
下一篇:没有了
网友评论