当前位置 : 主页 > 编程语言 > java >

mysql学习笔记(四)索引

来源:互联网 收集:自由互联 发布时间:2022-06-23
一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。 索引的常见模型 这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。

索引的常见模型

这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 Value。

哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

mysql学习笔记(四)索引_子节点

 

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。 

有序数组

查询最优,但更新维护成本极高

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

mysql学习笔记(四)索引_子节点_02

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉树

mysql学习笔记(四)索引_mysql_03

二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。

其原因是,索引不止存在内存中,还要写到磁盘上。你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,

这个查询可真够慢的。为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。

InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

mysql学习笔记(四)索引_主键_04

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

 

基于主键索引和普通索引的查询区别:

如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;

如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。
也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

页分裂和页合并

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。

以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。

在这种情况下,性能自然会受影响。除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。当然有分裂就有合并。

当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

为什么要设置为自增主键

性能 和 存储空间占用

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。

每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

 

试用于业务字段做主键的情况

  • 只有一个索引;
  • 该索引必须是唯一索引。
  • 由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

     

    总结:“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

     

    参考地址:

    ​​https://time.geekbang.org/column/article/69236​​

    【文章转自阿里云代理 http://www.558idc.com/aliyun.html 欢迎留下您的宝贵建议】
    上一篇:mysql学习笔记(三)事务隔离
    下一篇:没有了
    网友评论