当前位置 : 主页 > 编程语言 > 其它开发 >

leetcode 300. Longest Increasing Subsequence 最长递增子序列 (中等)

来源:互联网 收集:自由互联 发布时间:2022-06-27
核心思想是使用一个数组dp来保存,dp[i]的意义是到该位置为止的最长递增子序列。最后求所有位置的最大值,而不是dp的最后元素。 一、题目大意 标签: 动态规划 https://leetcode.cn/probl
核心思想是使用一个数组dp来保存,dp[i]的意义是到该位置为止的最长递增子序列。最后求所有位置的最大值,而不是dp的最后元素。 一、题目大意

标签: 动态规划
https://leetcode.cn/problems/longest-increasing-subsequence

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?
二、解题思路

核心思想是使用一个数组dp来保存,dp[i]的意义是到该位置为止的最长递增子序列。最后求所有位置的最大值,而不是dp的最后元素。

三、解题方法 3.1 Java实现
public class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        if (n <= 1) {
            return n;
        }
        int[] dp = new int[n];
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
        }
        int ret = dp[0];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            ret = Math.max(dp[i], ret);
        }
        return ret;
    }
}
四、总结小记
  • 2022/6/25 明后两天大到爆雨
上一篇:AspNetCore&amp;云效Flow持续集成
下一篇:没有了
网友评论