系统教程20天拿下Pytorch 最近和中哥、会哥进行一个小打卡活动,20天pytorch,这是第二天。欢迎一键三连。
文章目录
- 一、准备数据
- 二、定义模型
- 三、训练模型
- 四、评估模型
- 五、使用模型
- 六、保存模型
- 总结
import datetime
#打印时间
def printbar():
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"!pip install prettytable
!pip install torchkeras
一、准备数据
cifar2数据集为cifar10数据集的子集,只包括前两种类别airplane和automobile。
训练集有airplane和automobile图片各5000张,测试集有airplane和automobile图片各1000张。
cifar2任务的目标是训练一个模型来对飞机airplane和机动车automobile两种图片进行分类。
在Pytorch中构建图片数据管道通常有两种方法。
第二种方法是读取用户自定义数据集的通用方法,既可以读取图片数据集,也可以读取文本数据集。
本篇我们介绍第一种方法。
import torchfrom torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,datasetstransform_train = transforms.Compose(
[transforms.ToTensor()])
transform_valid = transforms.Compose(
[transforms.ToTensor()])ds_train = datasets.ImageFolder("/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train",
transform = transform_train,target_transform= lambda t:torch.tensor([t]).float())
ds_valid = datasets.ImageFolder("/home/mw/input/data6936/eat_pytorch_data/data/cifar2/test",
transform = transform_train,target_transform= lambda t:torch.tensor([t]).float())
print(ds_train.class_to_idx.values())
print(ds_train.classes)
print(ds_train.imgs)
'''
输出:
dict_values([0, 1])
['0_airplane', '1_automobile']
[('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/0.jpg', 0), ('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/1.jpg', 0), ('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/10.jpg', 0), ('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/100.jpg', 0), ('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/1000.jpg', 0), ('/home/mw/input/data6936/eat_pytorch_data/data/cifar2/train/0_airplane/1001.jpg', 0)]
'''
tips:
ImageFolder是一个通用的数据加载器,它要求我们以下面这种格式来组织数据集的训练、验证或者测试图片。
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
dataset=torchvision.datasets.ImageFolder(
root, transform=None,
target_transform=None,
loader=<function default_loader>,
is_valid_file=None)
参数详解:
root:图片存储的根目录,即各类别文件夹所在目录的上一级目录。
transform:对图片进行预处理的操作(函数),原始图片作为输入,返回一个转换后的图片。
**target_transform:**对图片类别进行预处理的操作,输入为 target,输出对其的转换。如果不传该参数,即对 target 不做任何转换,返回的顺序索引 0,1, 2…
loader:表示数据集加载方式,通常默认加载方式即可。
is_valid_file:获取图像文件的路径并检查该文件是否为有效文件的函数(用于检查损坏文件)
返回的dataset都有以下三种属性:
- self.classes:用一个 list 保存类别名称
- self.class_to_idx:字典类型、类别对应的索引,与不做任何转换返回的 target 对应
- self.imgs:保存(img-path, class) tuple的 list
'''
输出:
tensor([0.])
'''dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True,num_workers=3)
dl_valid = DataLoader(ds_valid,batch_size = 50,shuffle = True,num_workers=3)%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#查看部分样本
from matplotlib import pyplot as plt
plt.figure(figsize=(8,8))
for i in range(9):
img,label = ds_train[i]
img = img.permute(1,2,0)
ax=plt.subplot(3,3,i+1)
ax.imshow(img.numpy())
ax.set_title("label = %d"%label.item())
ax.set_xticks([])
ax.set_yticks([])
plt.show()
tips:
img = img.permute(1,2,0) # 转换维度
原图像尺寸33232 要转为32323
ax=plt.subplot(3,3,i+1) # 切割子图
ax.imshow(img.numpy()) # 可视化
for x,y in dl_train:
print(x.shape,y.shape)
break
'''
输出:
torch.Size([50, 3, 32, 32]) torch.Size([50, 1])
'''
二、定义模型
使用Pytorch通常有三种方式构建模型:
此处选择通过继承nn.Module基类构建自定义模型。
pool = nn.AdaptiveMaxPool2d((1,1))
t = torch.randn(10,8,32,32)
pool(t).shape
'''
输出:
torch.Size([10, 8, 1, 1])
'''
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
self.sigmoid = nn.Sigmoid()
def forward(self,x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
y = self.sigmoid(x)
return y
net = Net()
print(net)
'''
输出:
Net(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(dropout): Dropout2d(p=0.1, inplace=False)
(adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=64, out_features=32, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=32, out_features=1, bias=True)
(sigmoid): Sigmoid()
)
'''import torchkeras
torchkeras.summary(net,input_shape= (3,32,32))
'''
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 32, 30, 30] 896
MaxPool2d-2 [-1, 32, 15, 15] 0
Conv2d-3 [-1, 64, 11, 11] 51,264
MaxPool2d-4 [-1, 64, 5, 5] 0
Dropout2d-5 [-1, 64, 5, 5] 0
AdaptiveMaxPool2d-6 [-1, 64, 1, 1] 0
Flatten-7 [-1, 64] 0
Linear-8 [-1, 32] 2,080
ReLU-9 [-1, 32] 0
Linear-10 [-1, 1] 33
Sigmoid-11 [-1, 1] 0
================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.011719
Forward/backward pass size (MB): 0.359634
Params size (MB): 0.207035
Estimated Total Size (MB): 0.578388
----------------------------------------------------------------
'''
三、训练模型
Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。
有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。
此处介绍一种较通用的函数形式训练循环。
import pandas as pdfrom sklearn.metrics import roc_auc_score
model = net
model.optimizer = torch.optim.SGD(model.parameters(),lr = 0.01)
model.loss_func = torch.nn.BCELoss()
model.metric_func = lambda y_pred,y_true: roc_auc_score(y_true.data.numpy(),y_pred.data.numpy())
model.metric_name = "auc"
tips:
from sklearn.metrics import roc_auc_score
roc_auc_score
# 训练模式,dropout层发生作用
model.train()
# 梯度清零
model.optimizer.zero_grad()
# 正向传播求损失
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
# 反向传播求梯度
loss.backward()
model.optimizer.step()
return loss.item(),metric.item()
def valid_step(model,features,labels):
# 预测模式,dropout层不发生作用
model.eval()
# 关闭梯度计算
with torch.no_grad():
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
return loss.item(), metric.item()
# 测试train_step效果
features,labels = next(iter(dl_train))
train_step(model,features,labels)
'''
输出:
(0.6954520344734192, 0.500805152979066)
'''def train_model(model,epochs,dl_train,dl_valid,log_step_freq):
metric_name = model.metric_name
dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])
print("Start Training...")
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("=========="*8 + "%s"%nowtime)
for epoch in range(1,epochs+1):
# 1,训练循环-------------------------------------------------
loss_sum = 0.0
metric_sum = 0.0
step = 1
for step, (features,labels) in enumerate(dl_train, 1):
loss,metric = train_step(model,features,labels)
# 打印batch级别日志
loss_sum += loss
metric_sum += metric
if step%log_step_freq == 0:
print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
(step, loss_sum/step, metric_sum/step))
# 2,验证循环-------------------------------------------------
val_loss_sum = 0.0
val_metric_sum = 0.0
val_step = 1
for val_step, (features,labels) in enumerate(dl_valid, 1):
val_loss,val_metric = valid_step(model,features,labels)
val_loss_sum += val_loss
val_metric_sum += val_metric
# 3,记录日志-------------------------------------------------
info = (epoch, loss_sum/step, metric_sum/step,
val_loss_sum/val_step, val_metric_sum/val_step)
dfhistory.loc[epoch-1] = info
# 打印epoch级别日志
print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \
" = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f")
%info)
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)
print('Finished Training...')
return dfhistoryepochs = 20
dfhistory = train_model(model,epochs,dl_train,dl_valid,log_step_freq = 50)
四、评估模型
dfhistory%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()plot_metric(dfhistory,"loss")
五、使用模型
def predict(model,dl):model.eval()
with torch.no_grad():
result = torch.cat([model.forward(t[0]) for t in dl])
return(result.data)#预测概率
y_pred_probs = predict(model,dl_valid)
y_pred_probs
'''
tensor([[0.0342],
[0.9139],
[0.5341],
...,
[0.7885],
[0.9491],
[0.5726]])
'''#预测类别
y_pred = torch.where(y_pred_probs>0.5,
torch.ones_like(y_pred_probs),torch.zeros_like(y_pred_probs))
y_pred
'''
输出:
tensor([[0.],
[1.],
[0.],
...,
[0.],
[1.],
[1.]])
'''
六、保存模型
推荐使用保存参数方式保存Pytorch模型。
print(model.state_dict().keys())'''
输出:
odict_keys(['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias', 'linear1.weight', 'linear1.bias', 'linear2.weight', 'linear2.bias'])
'''# 保存模型参数
torch.save(model.state_dict(), "./data/model_parameter.pkl")
net_clone = Net()
net_clone.load_state_dict(torch.load("./data/model_parameter.pkl"))
predict(net_clone,dl_valid)
'''
输出:
tensor([[0.8983],
[0.5431],
[0.9716],
...,
[0.0663],
[0.1317],
[0.4519]])
'''
总结