每个硬币可以用无限多次,所以是完全背包问题。dp[i]表示,达到总金额i所需的最少硬币数,因为求最少硬币数所以先将dp初始化为amount+2,状态转移方程为:dp[i] = min(dp[i], dp[i-coin] +
标签: 动态规划
https://leetcode.cn/problems/coin-change
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
- 1 <= coins.length <= 12
- 1 <= coins[i] <= 231 - 1
- 0 <= amount <= 104
每个硬币可以用无限多次,所以是完全背包问题。
dp[i]表示,达到总金额i所需的最少硬币数,因为求最少硬币数所以先将dp初始化为amount+2,状态转移方程为:dp[i] = min(dp[i], dp[i-coin] + 1)
public class Solution {
public int coinChange(int[] coins, int amount) {
if (coins.length == 0) {
return -1;
}
int[] dp = new int[amount + 1];
Arrays.fill(dp, amount + 2);
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int coin : coins) {
if (i >= coin) {
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
}
return dp[amount] == amount + 2 ? -1 : dp[amount];
}
}
四、总结小记
- 2022/7/1 周五了,今天是个承上启下的日子