题目描述
Farmer John has been having trouble making his plants grow, and needs your help to water them properly. You are given the locations of N raindrops (1 <= N <= 100,000) in the 2D plane, where y represents vertical height of the drop, and x represents its location over a 1D number line:
Each drop falls downward (towards the x axis) at a rate of 1 unit per second. You would like to place Farmer John's flowerpot of width W somewhere along the x axis so that the difference in time between the first raindrop to hit the flowerpot and the last raindrop to hit the flowerpot is at least some amount D (so that the flowers in the pot receive plenty of water). A drop of water that lands just on the edge of the flowerpot counts as hitting the flowerpot.
Given the value of D and the locations of the N raindrops, please compute the minimum possible value of W.
输入描述
-
Line 1: Two space-separated integers, N and D. (1 <= D <=
1,000,000) -
Lines 2..1+N: Line i+1 contains the space-separated (x,y)
coordinates of raindrop i, each value in the range
0...1,000,000.
输出描述
- Line 1: A single integer, giving the minimum possible width of the
flowerpot. Output -1 if it is not possible to build a
flowerpot wide enough to capture rain for at least D units of
time.
示例1
输入
4 5
6 3
2 4
4 10
12 15
输出
2
说明
INPUT DETAILS:
There are 4 raindrops, at (6,3), (2,4), (4,10), and (12,15). Rain must
fall on the flowerpot for at least 5 units of time.
OUTPUT DETAILS:
A flowerpot of width 2 is necessary and sufficient, since if we place it
from x=4..6, then it captures raindrops #1 and #3, for a total rain
duration of 10-3 = 7.
知识点:单调队列,二分。
求可行答案的最小值,第一个想到的就是二分答案,检验答案是否可行。
验证一个区间是否可行,首先要知道一个区间最大最小值,但是这个区间是可变的,考虑用单调队列维护一个定长移动区间最大最小值。
细节上要注意,由于区间长度是非线性变化的,所以用while和两个端点指针来保证每一个区间是 \(<=mid\) 最大区间。并且队头弹出操作,队尾加入新元素操作,都是需要一个while维持的,因为不保证合法区间需要操作几个点。初始化时,要在 \(<=mid\) 最大区间之前保留一个点,方便之后遍历是从第一个区间开始的。因为检验可行性就行,所以遇到一个可行就可以跳出了。
时间复杂度 \(O(n \log x_{max})\)
空间复杂度 \(O(n)\)
方法二知识点:尺取法,单调队列。
首先,如果右端点找到一个合法区间,改变左端点时,不需要将右端点重置到左端点处,因为首末雨滴时差随区间变大是只增不减的,所以右端点一直往右即可,符合尺取法。
维护变区间最大最小值用单调队列即可,细节如上。
注意到,由于内循环需要一开始就检测是否已经合法,而不是加入后检测,因为为了固定右端点,改变左端点得到的合法区间都取到。因此为了防止空队列被访问,一开始加入一个点使得队列持续非空即可。
每次和答案取最小值时,要在前面加一个判断是否合法,因为可能导致内循环跳出的不是区间合法而是右端点到头了。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码 方法一#include <bits/stdc++.h>
using namespace std;
struct Point {
int x, y;
}a[1000007];
int n, d;
bool check(int mid) {
deque<int> dq1, dq2;
int l = 0, r = 0;
while (r < n - 1 && a[r + 1].x - a[0].x <= mid) {///单调递增/递减队列初始化,以获得所有长为mid的区间的最小值/最大值
while (!dq1.empty() && a[dq1.back()].y >= a[r].y) dq1.pop_back();
dq1.push_back(r);
while (!dq2.empty() && a[dq2.back()].y <= a[r].y) dq2.pop_back();
dq2.push_back(r);
r++;
}
int cnt = 0;
while (r < n) {
while (a[r].x - a[l].x > mid) l++;
while (!dq1.empty() && dq1.front() < l) dq1.pop_front();
while (!dq2.empty() && dq2.front() < l) dq2.pop_front();
while (r < n && a[r].x - a[l].x <= mid) {
while (!dq1.empty() && a[dq1.back()].y >= a[r].y) dq1.pop_back();
dq1.push_back(r);
while (!dq2.empty() && a[dq2.back()].y <= a[r].y) dq2.pop_back();
dq2.push_back(r);
r++;
}
if (a[dq2.front()].y - a[dq1.front()].y >= d) return true;
}
return false;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> d;
for (int i = 0;i < n;i++) cin >> a[i].x >> a[i].y;
sort(a, a + n, [&](Point a, Point b) {return a.x == b.x ? a.y < b.y : a.x < b.x;});
int l = 1, r = a[n - 1].x;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) r = mid - 1;
else l = mid + 1;
}
cout << (l > a[n - 1].x ? -1 : l) << '\n';
return 0;
}
方法二
///注意边界,可以通过初始化减少if语句长度
#include <bits/stdc++.h>
using namespace std;
struct Point {
int x, y;
}a[1000007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, d;
cin >> n >> d;
for (int i = 0;i < n;i++) cin >> a[i].x >> a[i].y;
sort(a, a + n, [&](Point a, Point b) {return a.x == b.x ? a.y < b.y : a.x < b.x;});
deque<int> dq1, dq2;
dq1.push_back(0);
dq2.push_back(0);
int l = 0, r = 1;
int ans = ~(1 << 31);
while (l < n) {
while (r < n) {
if (a[dq2.front()].y - a[dq1.front()].y >= d) break;
while (!dq1.empty() && a[dq1.back()].y >= a[r].y) dq1.pop_back();
dq1.push_back(r);
while (!dq2.empty() && a[dq2.back()].y <= a[r].y) dq2.pop_back();
dq2.push_back(r);
r++;
}
if (a[dq2.front()].y - a[dq1.front()].y >= d) ans = min(ans, a[r - 1].x - a[l].x);
if (l == dq1.front()) dq1.pop_front();
if (l == dq2.front()) dq2.pop_front();
l++;
}
cout << (ans > a[n - 1].x ? -1 : ans) << '\n';
return 0;
}