模型实例_逻辑回归 关于泰坦尼克号乘客的⽣还率 利用Python进行数据分析(第二版).pdf Introduction to scikit - learn¶ # 举个例⼦,我⽤⼀个Kaggle竞赛的经典数据集,关于泰坦尼克号 # 乘客的⽣
模型实例_逻辑回归
关于泰坦尼克号乘客的⽣还率
利用Python进行数据分析(第二版).pdf
# 举个例⼦,我⽤⼀个Kaggle竞赛的经典数据集,关于泰坦尼克号
# 乘客的⽣还率。我们⽤pandas加载测试和训练数据集:
# 13.4 scikit-learn介绍
# scikit-learn是⼀个⼴泛使⽤、⽤途多样的Python机器学习库。它
# 包含多种标准监督和⾮监督机器学习⽅法和模型选择和评估、数
# 据转换、数据加载和模型持久化⼯具。这些模型可以⽤于分类、
# 聚合、预测和其它任务。
# 举个例⼦,我⽤⼀个Kaggle竞赛的经典数据集,关于泰坦尼克号
# 乘客的⽣还率。我们⽤pandas加载测试和训练数据集:
train = pd.read_csv('C:/data/titanic/train.csv')
test = pd.read_csv('C:/data/titanic/test.csv')
train[:4]
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
statsmodels和scikit-learn通常不能接收缺失数据,因此我们要查
# 看列是否包含缺失值:
# statsmodels和scikit-learn通常不能接收缺失数据,因此我们要查
# 看列是否包含缺失值:
train.isnull().sum()
test.isnull().sum()
PassengerId 0
Pclass 0
Name 0
Sex 0
Age 86
SibSp 0
Parch 0
Ticket 0
Fare 1
Cabin 327
Embarked 0
dtype: int64
在统计和机器学习的例⼦中,根据数据中的特征,⼀个典型的任
# 务是预测乘客能否⽣还。模型现在训练数据集中拟合,然后⽤样
# 本外测试数据集评估。
# 我想⽤年龄作为预测值,但是它包含缺失值。缺失数据补全的⽅
# 法有多种,我⽤的是⼀种简单⽅法,⽤训练数据集的中位数补全
# 两个表的空值:
# 在统计和机器学习的例⼦中,根据数据中的特征,⼀个典型的任
# 务是预测乘客能否⽣还。模型现在训练数据集中拟合,然后⽤样
# 本外测试数据集评估。
# 我想⽤年龄作为预测值,但是它包含缺失值。缺失数据补全的⽅
# 法有多种,我⽤的是⼀种简单⽅法,⽤训练数据集的中位数补全
# 两个表的空值:
impute_value = train['Age'].median()
train['Age'] = train['Age'].fillna(impute_value)
test['Age'] = test['Age'].fillna(impute_value)
# 现在我们需要指定模型。我增加了⼀个列IsFemale,作
# 为“Sex”列的编码:
# 判断性别,年龄
train['IsFemale'] = (train['Sex'] == 'female').astype(int)
test['IsFemale'] = (test['Sex'] == 'female').astype(int)
predictors = ['Pclass', 'IsFemale', 'Age']
X_train = train[predictors].values
X_test = test[predictors].values
y_train = train['Survived'].values
X_train[:5]
y_train[:5]
array([0, 1, 1, 1, 0], dtype=int64)
# 我们⽤scikit•learn的LogisticRegression模型,创建⼀个模型实例:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
# 现在,我们可以⽤model.predict,对测试数据进⾏预测:
model.fit(X_train, y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='warn', n_jobs=None, penalty='l2',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)
现在,我们可以⽤model.predict,对测试数据进⾏预测:
# 现在,我们可以⽤model.predict,对测试数据进⾏预测:
y_predict = model.predict(X_test)
y_predict[:10]
array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0], dtype=int64)
(y_true == y_predict).mean()
# 交叉验证通过分割训练数据来模拟样本外预测。基于模型的精度
# 得分(⽐如均⽅差),可以对模型参数进⾏⽹格搜索。有些模
# 型,如logistic回归,有内置的交叉验证的估计类。例如,
# logisticregressioncv类可以⽤⼀个参数指定⽹格搜索对模型的正
# 则化参数C的粒度:
from sklearn.linear_model import LogisticRegressionCV
model_cv = LogisticRegressionCV(10)
model_cv.fit(X_train, y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:1978: FutureWarning: The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence this warning.
warnings.warn(CV_WARNING, FutureWarning)
LogisticRegressionCV(Cs=10, class_weight=None, cv='warn', dual=False,
fit_intercept=True, intercept_scaling=1.0, l1_ratios=None,
max_iter=100, multi_class='warn', n_jobs=None,
penalty='l2', random_state=None, refit=True, scoring=None,
solver='lbfgs', tol=0.0001, verbose=0)
# 要⼿动进⾏交叉验证,你可以使⽤cross_val_score帮助函数,它
# 可以处理数据分割。例如,要交叉验证我们的带有四个不重叠训
# 练数据的模型,可以这样做:
from sklearn.model_selection import cross_val_score
model = LogisticRegression(C=10)
scores = cross_val_score(model, X_train, y_train, cv=4)
scores
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
array([0.7723, 0.8027, 0.7703, 0.7883])