@[toc]
1.合并
1.1 结构合并
将两个结构相同的数据合并
1.1.1 concat函数
-
函数配置
concat([dataFrame1, dataFrame2,…], index_ingore=False)参数说明:index_ingore=False(表示合并的索引不延续),index_ingore=True(表示合并的索引可延续)
- 实例 import pandas as pd import numpy as np
创建一个十行两列的二维数据
df = pd.DataFrame(np.random.randint(0, 10, (3, 2)), columns=['A', 'B'])
将数据拆分成两份,并保存在列表中
data_list = [df[0:2], df[3:]]
索引值不延续
df1 = pd.concat(data_list, ignore_index=False)
索引值延续
df2 = pd.concat(data_list, ignore_index=True)
* 返回结果 ```python ----------------df-------------------------- A B 0 7 8 1 7 3 2 5 9 3 4 0 4 1 8 ----------------df1-------------------------- A B 0 7 8 1 7 3 3 4 0# -------------->这里并没有2出现,索引不连续 4 1 8 ----------------df2-------------------------- A B 0 7 8 1 7 3 2 4 0 3 1 81.1.2 append函数
-
函数配置
df.append(df1, index_ignore=True)参数说明:index_ingore=False(表示索引不延续),index_ingore=True(表示索引延续)
- 实例 import pandas as pd import numpy as np
创建一个五行两列的二维数组
df = pd.DataFrame(np.random.randint(0, 10, (5, 2)), columns=['A', 'B'])
创建要追加的数据
narry = np.random.randint(0, 10, (3, 2))data_list = pd.DataFrame(narry, columns=['A', 'B'])
合并数据
df1 = df.append(data_list, ignore_index=True)
* 返回结果 ```python ----------------df-------------------------- A B 0 5 6 1 1 2 2 5 3 3 1 8 4 1 2 ----------------df1-------------------------- A B 0 5 6 1 1 2 2 5 3 3 1 8 4 1 2 5 8 1 6 3 5 7 1 11.2 字段合并
将同一个数据不同列合并
- 参数配置 pd.merge( left, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, )
- 参数说明
- 实例1 import pandas as pd
df1 = pd.DataFrame({'key':['a','b','c'], 'data1':range(3)})df2 = pd.DataFrame({'key':['a','b','c'], 'data2':range(3)})df = pd.merge(df1, df2) # 合并时默认以重复列并作为合并依据
* 结果展示 ```python ----------------df1-------------------------- key data1 0 a 0 1 b 1 2 c 2 ----------------df2-------------------------- key data2 0 a 0 1 b 1 2 c 2 ----------------df--------------------------- key data1 data2 0 a 0 0 1 b 1 1 2 c 2 2- 实例2 # 多键连接时将连接键组成列表传入
right=DataFrame({'key1':['foo','foo','bar','bar'], 'key2':['one','one','one','two'], 'lval':[4,5,6,7]})
left=DataFrame({'key1':['foo','foo','bar'], 'key2':['one','two','one'], 'lval':[1,2,3]})
pd.merge(left,right,on=['key1','key2'],how='outer')
* 结果展示 ```python ----------------right------------------------- key1 key2 lval 0 foo one 4 1 foo one 5 2 bar one 6 3 bar two 7 ----------------left-------------------------- key1 key2 lval 0 foo one 1 1 foo two 2 2 bar one 3 ----------------df--------------------------- key1 key2 lval_x lval_y 0 foo one 1.0 4.0 1 foo one 1.0 5.0 2 foo two 2.0 NaN 3 bar one 3.0 6.0 4 bar two NaN 7.02.去重
- 参数配置 data.drop_duplicates(subset=['A','B'],keep='first',inplace=True)
- 参数说明
- 实例
- 去除完全重复的行数据
data.drop_duplicates(inplace=True)
df = pd.DataFrame({ 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], 'rating': [4, 4, 3.5, 15, 5] })
df.drop_duplicates()
结果展示 ```python ---------------去重前的df--------------------------- brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 ---------------去重后的df--------------------------- brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0使用subset 去除某几列重复的行数据
data.drop_duplicates(subset=['A','B'],keep='first',inplace=True)
df.drop_duplicates(subset=['brand'])结果展示
brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5使用 keep删除重复项并保留最后一次出现
df.drop_duplicates(subset=['brand', 'style'], keep='last')- 结果展示
brand style rating
1 Yum Yum cup 4.0
2 Indomie cup 3.5
4 Indomie pack 5.0
参考链接