当前位置 : 主页 > 编程语言 > java >

雪花算法

来源:互联网 收集:自由互联 发布时间:2022-08-15
简介 现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证 表中 id 的全局唯一性 。 对于 MySQL 而言,一个表中的主键 id 一般使用自

简介

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法

SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 ​​scala​​ 语言版本。

雪花算法_自增

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id

最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了

接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。

再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。

最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。

算法实现

/**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L;

private final long workerId;
// 数据标识id部分
private final long datacenterId;

public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}

if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;

return nextId;
}

private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}

private long timeGen() {
return System.currentTimeMillis();
}

/**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}

/**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}

public static void main(String[] args) {
IdWorker idWorker = new IdWorker(0,0);

for (int i = 0; i <10000; i++) {
long nextId=idWorker.nextId();
System.out.println(nextId);
}
}
}

算法优缺点

雪花算法有以下几个优点:

高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。

基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增

不依赖第三方库或者中间件。

算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。



上一篇:2022年8月11日——mybatis学习(2)
下一篇:没有了
网友评论