当前位置 : 主页 > 编程语言 > python >

【Pandas总结】第五节 Pandas 数据查询方法总结_df.loc()总结

来源:互联网 收集:自由互联 发布时间:2022-10-14
一、写在前面 如果说Pandas最重要的方法是什么,毫无疑问就是查询数据;所以,这节的内容应当是Pandas的核心知识点。能够按我们的要求查询出所需的数据,是我们使用Pandas的最重要功

一、写在前面

如果说Pandas最重要的方法是什么,毫无疑问就是查询数据;所以,这节的内容应当是Pandas的核心知识点。能够按我们的要求查询出所需的数据,是我们使用Pandas的最重要功能! 综上,这节内容十分十分十分十分的重要。

pandas常用的查询函数有:df.loc(),df.iloc(),df.where(),de.query();

函数 功能 df.loc() 根据行,列的标签进行查询 df.iloc() 根据行,列的数字位置进行查询 df.where() 可以根据条件返回满足需求的结果 de.query() 可以根据条件返回满足需求的结果

以上的几种方法,都可以实现相同的功能,所以我们能够熟练的掌握其中一个就好,这里我推荐df.loc(),因为这个函数可以实现的功能是最多的,一般的应用场景,只要会这个就完全够用了;

二、查询方法:df.loc()

pandas通常碰到的查询需求,有如下五种:按数值,列表,区间,条件,函数五种方法进行查询;

使用的数据如下,大家可以复制到本地进行练习:

Date,天气,高温,低温,风向,风速 2020/7/16,晴,26,21,东风,2 2020/7/17,多云,25,21,西风,3 2020/7/20,小雨,24,15,东北风,5 2020/7/21,多云转晴,22,17,东风,2 2020/7/22,多云,20,16,西风,1 2020/7/23,雷阵雨,20,20,东北风,3 2020/7/24,多云,26,17,西南风,2 2020/7/27,小雨,26,17,东风,3 2020/7/28,多云转晴,25,24,西风,5 2020/7/29,晴,24,23,东北风,2 2020/7/30,晴,22,20,东风,2 2020/7/31,晴,26,22,东风,3 2020/8/3,晴,25,22,西风,2 2020/8/4,多云转晴,24,16,东北风,3 2020/8/5,多云,22,14,东风,5 2020/8/6,雷阵雨,20,12,西风,2 2020/8/7,小雨,20,13,东北风,1 2020/8/10,多云转晴,26,22,西南风,3

读入数据:

import pandas as pd data_path_2=r"E:\VSCODE\2_numpy_pandas\pandas\data_select.csv" df=pd.read_csv(data_path_2,encoding='gbk') # 这里因为我是用Excel保存的csv,所以编码格式是gbk, 大部分时候使用UTF-8

2.1 查询单个值

通常情况下,使用df.loc()时,只要传入行列名即可返回要查询的值,比如:我们需要查询 2020/7/28 的天气,可以通过:df.loc['2020-7-28','天气'] 来查询,然后我们会发现报错:KeyError: '2020-7-28'; 这里报错的原因是:我们在读取数据的时候,没有将日期设置为索引值;所以我们需要这样做:

方法一:在读入数据的时候设置index

import pandas as pd data_path_2=r"E:\VSCODE\2_numpy_pandas\pandas\data_select.csv" df=pd.read_csv(data_path_2,encoding='gbk',index_col='Date') # 在这里设置index_col df=df.dropna(how="all",axis='rows') print(df.loc['2020/7/28','天气'])

在这里插入图片描述 方法二:读入数据后,设置index

import pandas as pd data_path_2=r"E:\VSCODE\2_numpy_pandas\pandas\data_select.csv" df=pd.read_csv(data_path_2,encoding='gbk') df=df.dropna(how="all",axis='rows') df = df.set_index(['Date']) # 设置index print(df.loc['2020/7/28','天气'])

在这里插入图片描述

2.2 查询列表对应的值

  • 要求:需要查询 2020/7/28 ,29,30 三天的天气
df.loc[['2020/7/28','2020/7/29','2020/7/30'],'天气']

在这里插入图片描述

  • 要求:需要查询 2020/7/28 ,29,30 三天的天气,最高温度,最低温度
df.loc[['2020/7/28','2020/7/29','2020/7/30'],['天气','高温','低温']]

在这里插入图片描述

2.3 查询区间内的结果

可以使用 : 来查询区间内的结果,行与列均可以使用,举例如下:

  • 要求:查询2020/7/28 ~ 2020/8/3 的所有天气情况;
df.loc['2020/7/28':'2020/8/3','天气':'风速']

在这里插入图片描述

2.4 条件查询

  • 要求:查询最低温度大于22度的天气;
df.loc[df['低温']>22,:] # 后面的冒号指所有的列

在这里插入图片描述

  • 要求:多条件查询,查询低温小于22℃,高温大于23℃,天气为晴的天气;
df.loc[(df['低温']<22) & (df['高温']>23) & (df['天气']=='晴'),:]

在这里插入图片描述

2.5 按照函数要求查询

  • 要求:查询7月份的晴天

方法一:使用上面的条件查询的方法

df.loc[(df.index.str.startswith('2020/7') & (df['天气']=='晴'))]

在这里插入图片描述

方法二:使用函数查询的方法

def func(df): return df.index.str.startswith('2020/7') & (df['天气']=='晴') df.loc[func,:]

在这里插入图片描述

三、写在最后

pandas的查询方法有非常多,在刚开始学的时候会让我们眼花缭乱,我推荐的方法是:不学那么多,先只学这一个方法,就足够我们使用了。 等这个方法已经炉火纯青后,再学习别的方法; 今天的分享就到这里啦~

上一篇:周末自制了一个批量图片水印添加器!
下一篇:没有了
网友评论