当前位置 : 主页 > 编程语言 > java >

Java数据结构之稀疏数组的实现与应用

来源:互联网 收集:自由互联 发布时间:2023-01-30
目录 1.稀疏数组引入 1.1 使用场景 1.2 稀疏数组简介 2.稀疏数组的实现 2.1 案例概述 2.2 思路分析 2.3 代码实现 1.稀疏数组引入 1.1 使用场景 笔者在课程设计中曾写过一个扫雷小游戏,为了
目录
  • 1.稀疏数组引入
    • 1.1 使用场景
    • 1.2 稀疏数组简介
  • 2.稀疏数组的实现
    • 2.1 案例概述
    • 2.2 思路分析
    • 2.3 代码实现

1.稀疏数组引入

1.1 使用场景

笔者在课程设计中曾写过一个扫雷小游戏,为了便于讲解,我们来做个简化(实际比这个复杂),只考虑当前位置有雷与无雷两种状况:雷用1表示,非雷用0表示。则将当前状态用二维数组表示如下:

在右侧的二维数组中,很多都是0,即记录了很多没有意义的数据,因此,我们考虑使用稀疏数组进行存储结构的优化。

1.2 稀疏数组简介

当一个数组中的大部分元素都是0(或者为相同的某一值),可以考虑使用稀疏数组来优化保存。

而稀疏数组的基本处理方式为:

记录数组有几行几列,有几个有效值;

把有效值的元素的行、列及值记录在一个小规模的数组中,从而缩小程序的规模。

例如上述的二维数组用稀疏数组表示,可以创建一个n*3列的稀疏数组。其中,n为有效值个数加1,第一行用于存储二维数组的行数、列数及有效值的个数,便于恢复二维数组时使用。

而从第二行开始后的每一行,都记录某个有效值的所在行、列索引与值。

上述二维数组用稀疏数组表示如下:

稀疏数组的第n行rowcolval01010810412081315141715481655177218871

以索引0那行,10 10 8为例:表示原二维数组有10行10列,共有8个有效值。

以索引1那行,0 4 1为例:即第一个有效值在原数组的第0行第4列(索引为0和4),值为1,以此类推…

2.稀疏数组的实现

2.1 案例概述

1.使用稀疏数组来保存前面1.1样例中的二维数组(见下图);

2.可以由稀疏数组恢复成二维数组。

2.2 思路分析

二维数组转稀疏数组:

遍历原始的二维数组,得到有效数据的个数 amount;

根据 amount 可以创建稀疏数组 sparseArray[amount+1][3];

将二维数组中的有效值存入稀疏数组中。

稀疏数组恢复二维数组:

先读取稀疏数组的第一行,根据第一行的数据,创建原始二维数组;

读取第二行及以后行的数据,按照每行的行、列、值恢复有效值,录入二维数组中。

2.3 代码实现

根据如上思路,逐步实现稀疏数组,详情可见代码注释

参考代码:

/**
 * @author 兴趣使然黄小黄
 * @version 1.0
 * 二维数组转稀疏数组、稀疏数组还原二维数组的实现
 */
public class SparseArray {

    public static void main(String[] args) {
        //先创建原始二维数组
        int[][] originalArray = new int[10][10];
        originalArray[0][4] = 1;
        originalArray[0][8] = 1;
        originalArray[1][5] = 1;
        originalArray[1][7] = 1;
        originalArray[4][8] = 1;
        originalArray[5][5] = 1;
        originalArray[7][2] = 1;
        originalArray[8][7] = 1;
        //输出原始的二维数组
        System.out.println("原始的二维数组:");
        for (int[] row: originalArray) {
            for (int data : row) {
                System.out.printf("%d\t", data);
            }
            System.out.println();
        }

        //将二维数组转成稀疏数组
        //1.遍历二维数组,得到非0的有效数据的个数
        int amount = 0;
        for (int i = 0; i < originalArray.length; i++) {
            for (int j = 0; j < originalArray[i].length; j++) {
                if (originalArray[i][j] != 0){
                    amount++;
                }
            }
        }
        System.out.println("amount = " + amount);
        //2.创建对应的稀疏数组 sparseArray[amount+1][3], 并初始化稀疏数组第一行的数据
        //第一行第一列: 原数组的行数   第一行第二列: 原数组的列数  第一行第三列: 原数组的有效数据个数
        int[][] sparseArray = new int[amount + 1][3];
        sparseArray[0][0] = 10;
        sparseArray[0][1] = 10;
        sparseArray[0][2] = amount;
        //3.遍历二维数组,将非0值存储进稀疏数组
        int count = 0; //用于记录是第几个非零数据
        for (int i = 0; i < originalArray.length; i++) {
            for (int j = 0; j < originalArray[i].length; j++) {
                if (originalArray[i][j] != 0){
                    count++;
                    sparseArray[count][0] = i; //记录所在行
                    sparseArray[count][1] = j; //记录所在列
                    sparseArray[count][2] = originalArray[i][j]; //记录值
                }
            }
        }
        //输出稀疏数组
        System.out.println("稀疏数组:");
        for (int i = 0; i < sparseArray.length; i++) {
                System.out.printf("%d\t%d\t%d\n", sparseArray[i][0], sparseArray[i][1], sparseArray[i][2]);
        }

        //将稀疏数组恢复成为二维数组
        //1.根据稀疏数组的第一行初始化二维数组
        int[][] recoveredArray = new int[sparseArray[0][0]][sparseArray[0][1]];
        //2.读取稀疏数组的后面行数据,赋值给原始二维数组
        for (int i = 1; i < sparseArray.length; i++) {
            recoveredArray[sparseArray[i][0]][sparseArray[i][1]] = sparseArray[i][2];
        }
        //输出二维数组
        System.out.println("恢复后的二维数组:");
        for (int[] row: recoveredArray) {
            for (int data : row) {
                System.out.printf("%d\t", data);
            }
            System.out.println();
        }
    }
}

运行结果:

原始的二维数组:
0    0    0    0    1    0    0    0    1    0    
0    0    0    0    0    1    0    1    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    0    1    0    
0    0    0    0    0    1    0    0    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    1    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    1    0    0    
0    0    0    0    0    0    0    0    0    0    
amount = 8
稀疏数组:
10    10    8
0    4    1
0    8    1
1    5    1
1    7    1
4    8    1
5    5    1
7    2    1
8    7    1
恢复后的二维数组:
0    0    0    0    1    0    0    0    1    0    
0    0    0    0    0    1    0    1    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    0    1    0    
0    0    0    0    0    1    0    0    0    0    
0    0    0    0    0    0    0    0    0    0    
0    0    1    0    0    0    0    0    0    0    
0    0    0    0    0    0    0    1    0    0    
0    0    0    0    0    0    0    0    0    0    

比对结果如下:

经过比较,恢复后的二维数组与原二维数组保持一致!

分析可知:原二维数组需要的空间为:10 * 10 *(int),而稀疏数组只需要 9 * 3 * (int),相对节省了73(int)的空间!

以上就是Java数据结构之稀疏数组的实现与应用的详细内容,更多关于Java稀疏数组的资料请关注自由互联其它相关文章!

上一篇:详解Java枚举与接口常量和类常量的区别
下一篇:没有了
网友评论