目录 1.代码实现 2.输出图像 3.了解坐标轴 4.计算0到180度之间的方向 在本教程中,我们将构建一个程序,该程序可以使用流行的计算机视觉库 OpenCV 确定对象的方向(即以度为单位的旋转
目录
- 1.代码实现
- 2.输出图像
- 3.了解坐标轴
- 4.计算0到180度之间的方向
在本教程中,我们将构建一个程序,该程序可以使用流行的计算机视觉库 OpenCV 确定对象的方向(即以度为单位的旋转角度)。
最常见的现实世界用例之一是当您想要开发机械臂的取放系统时。确定一个物体在传送带上的方向是确定合适的抓取、捡起物体并将其放置在另一个位置的关键。
1.代码实现
接受一个名为input_img.jpg
的图像,并输出一个名为output_img.jpg
的带标记的图像。部分代码来自官方的OpenCV实现。
import cv2 as cv from math import atan2, cos, sin, sqrt, pi import numpy as np def drawAxis(img, p_, q_, color, scale): p = list(p_) q = list(q_) ## [visualization1] angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0])) # Here we lengthen the arrow by a factor of scale q[0] = p[0] - scale * hypotenuse * cos(angle) q[1] = p[1] - scale * hypotenuse * sin(angle) cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA) # create the arrow hooks p[0] = q[0] + 9 * cos(angle + pi / 4) p[1] = q[1] + 9 * sin(angle + pi / 4) cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA) p[0] = q[0] + 9 * cos(angle - pi / 4) p[1] = q[1] + 9 * sin(angle - pi / 4) cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA) ## [visualization1] def getOrientation(pts, img): ## [pca] # Construct a buffer used by the pca analysis sz = len(pts) data_pts = np.empty((sz, 2), dtype=np.float64) for i in range(data_pts.shape[0]): data_pts[i,0] = pts[i,0,0] data_pts[i,1] = pts[i,0,1] # Perform PCA analysis mean = np.empty((0)) mean, eigenvectors, eigenvalues = cv.PCACompute2(data_pts, mean) # Store the center of the object cntr = (int(mean[0,0]), int(mean[0,1])) ## [pca] ## [visualization] # Draw the principal components cv.circle(img, cntr, 3, (255, 0, 255), 2) p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0]) p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0]) drawAxis(img, cntr, p1, (255, 255, 0), 1) drawAxis(img, cntr, p2, (0, 0, 255), 5) angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians ## [visualization] # Label with the rotation angle label = " Rotation Angle: " + str(-int(np.rad2deg(angle)) - 90) + " degrees" textbox = cv.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1) cv.putText(img, label, (cntr[0], cntr[1]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv.LINE_AA) return angle # Load the image img = cv.imread("input_img.jpg") # Was the image there? if img is None: print("Error: File not found") exit(0) cv.imshow('Input Image', img) # Convert image to grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Convert image to binary _, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) # Find all the contours in the thresholded image contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) for i, c in enumerate(contours): # Calculate the area of each contour area = cv.contourArea(c) # Ignore contours that are too small or too large if area < 3700 or 100000 < area: continue # Draw each contour only for visualisation purposes cv.drawContours(img, contours, i, (0, 0, 255), 2) # Find the orientation of each shape getOrientation(c, img) cv.imshow('Output Image', img) cv.waitKey(0) cv.destroyAllWindows() # Save the output image to the current directory cv.imwrite("output_img.jpg", img)
2.输出图像
3.了解坐标轴
红线表示每个物体的正x轴。蓝线表示每个物体的正y轴。
全局正x轴从左到右横贯图像。整体正z轴指向这一页外。全局正y轴从图像的底部垂直指向图像的顶部。
使用右手法则来测量旋转,你将你的四个手指(食指到小指)笔直地指向全局正x轴的方向。
然后逆时针旋转四个手指90度。指尖指向y轴正方向,大拇指指向纸外z轴正方向。
4.计算0到180度之间的方向
如果我们想计算一个对象的方向,并确保结果总是在0到180度之间,我们可以使用以下代码:
# This programs calculates the orientation of an object. # The input is an image, and the output is an annotated image # with the angle of otientation for each object (0 to 180 degrees) import cv2 as cv from math import atan2, cos, sin, sqrt, pi import numpy as np # Load the image img = cv.imread("input_img.jpg") # Was the image there? if img is None: print("Error: File not found") exit(0) cv.imshow('Input Image', img) # Convert image to grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Convert image to binary _, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) # Find all the contours in the thresholded image contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) for i, c in enumerate(contours): # Calculate the area of each contour area = cv.contourArea(c) # Ignore contours that are too small or too large if area < 3700 or 100000 < area: continue # cv.minAreaRect returns: # (center(x, y), (width, height), angle of rotation) = cv2.minAreaRect(c) rect = cv.minAreaRect(c) box = cv.boxPoints(rect) box = np.int0(box) # Retrieve the key parameters of the rotated bounding box center = (int(rect[0][0]),int(rect[0][1])) width = int(rect[1][0]) height = int(rect[1][1]) angle = int(rect[2]) if width < height: angle = 90 - angle else: angle = -angle label = " Rotation Angle: " + str(angle) + " degrees" textbox = cv.rectangle(img, (center[0]-35, center[1]-25), (center[0] + 295, center[1] + 10), (255,255,255), -1) cv.putText(img, label, (center[0]-50, center[1]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,0), 1, cv.LINE_AA) cv.drawContours(img,[box],0,(0,0,255),2) cv.imshow('Output Image', img) cv.waitKey(0) cv.destroyAllWindows() # Save the output image to the current directory cv.imwrite("min_area_rec_output.jpg", img)
到此这篇关于详解Python使用OpenCV如何确定一个对象的方向的文章就介绍到这了,更多相关Python OpenCV确定对象方向内容请搜索自由互联以前的文章或继续浏览下面的相关文章希望大家以后多多支持自由互联!