目录
- 前言
- 初识apscheduler
- apscheduler有哪些模块
- 1. 触发器triggers:
- 2. 任务存储器job_stores
- 3. 执行器executors
- 4. 调度器schedulers
- 异常监听
- apscheduler的封装使用
- 小结
前言
之前有介绍了用Linux crontab的方式来实现定时任务,这是使用Linux内置模块来实现的。而在Python中,还可以用第三方包来管理定时任务,比如celery、apscheduler。相对来说apscheduler使用起来更简单一些,这里来介绍一下apscheduler的使用方法。
首先安装起来很简单,运行pip install apscheduler
即可。
初识apscheduler
来个简单的例子看看apscheduler是如何使用的。
#encoding:utf-8 from apscheduler.schedulers.blocking import BlockingScheduler import datetime def sch_test(): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, 测试apscheduler'.format(now)) task = BlockingScheduler() task.add_job(func=sch_test, trigger='cron', second='*/10') task.start()
上述例子很简单,我们首先要定义一个apscheduler的对象,然后add_job添加任务,最后start开启任务就行了。
例子是每隔10秒运行一次sch_test任务,运行结果如下:
时间:2022-10-08 15:16:30, 测试apscheduler
时间:2022-10-08 15:16:40, 测试apscheduler
时间:2022-10-08 15:16:50, 测试apscheduler
时间:2022-10-08 15:17:00, 测试apscheduler
如果我们要在执行任务函数时携带参数,只要在add_job函数中添加args就行,比如task.add_job(func=sch_test, args=('a'), trigger='cron', second='*/10')
。
apscheduler有哪些模块
上面例子中我们初步了解到如何使用apschedulerl了,接下来需要知道apscheduler的设计框架。apscheduler有四个主要模块,分别是:触发器triggers、任务存储器job_stores、执行器executors、调度器schedulers。
1. 触发器triggers:
触发器指的是任务指定的触发方式,例子中我们用的是“cron”方式。我们可以选择cron、date、interval中的一个。
1.cron表示的是定时任务,类似linux crontab,在指定的时间触发。
可用参数如下:
除此之外,我们还可用表达式类型去设置cron。比如常用的有:
使用方法示例,在每天7点20分执行一次:
task.add_job(func=sch_test, args=('定时任务',), trigger='cron',
hour='7', minute='20')
2.date表示具体到某个时间的一次性任务;
使用方法示例:
# 使用run_date指定运行时间 task.add_job(func='sch_test', trigger='date', run_date=datetime.datetime(2022 ,10 , 8, 16, 1, 30)) # 或者用next_run_time task.add_job(func=sch_test,trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3))
3.interval表示的是循环任务,指定一个间隔时间,每过间隔时间执行一次。
interval可设置如下的参数:
使用方法示例,每隔3秒执行一次sch_test任务:
task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3)
。
来个例子把3种触发器都使用一遍:
# encoding:utf-8 from apscheduler.schedulers.blocking import BlockingScheduler import datetime def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) task = BlockingScheduler() task.add_job(func=sch_test, args=('一次性任务',),trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3)) task.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3) task.start()
打印部分结果:
时间:2022-10-08 15:45:49, 一次性任务测试apscheduler
时间:2022-10-08 15:45:49, 循环任务测试apscheduler
时间:2022-10-08 15:45:50, 定时任务测试apscheduler
时间:2022-10-08 15:45:52, 循环任务测试apscheduler
时间:2022-10-08 15:45:55, 定时任务测试apscheduler
时间:2022-10-08 15:45:55, 循环任务测试apscheduler
时间:2022-10-08 15:45:58, 循环任务测试apscheduler
通过代码示例和结果展示,我们可清晰的知道不同触发器的使用区别。
2. 任务存储器job_stores
顾名思义,任务存储器是存储任务的地方,默认都是存储在内存中。我们也可自定义存储方式,比如将任务存到mysql中。这里有以下几种选择:
通常默认存储在内存即可,但若程序故障重启的话,会重新拉取任务运行了,如果你对任务的执行要求高,那么可以选择其他的存储器。
使用SQLAlchemyJobStore存储器示例:
from apscheduler.schedulers.blocking import BlockingScheduler def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) sched = BlockingScheduler() # 使用mysql存储任务 sql_url = 'mysql+pymysql://root:root@localhost:3306/db_name?charset=utf8' sched.add_jobstore('sqlalchemy',url=sql_url) # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') sched.start()
3. 执行器executors
执行器的功能就是将任务放到线程池或进程池中运行。有以下几种选择:
默认是ThreadPoolExecutor, 常用的也就是第线程和进程池执行器。如果应用是CPU密集型操作,可用ProcessPoolExecutor来执行。
4. 调度器schedulers
调度器属于apscheduler的核心,它扮演着统筹整个apscheduler系统的角色,存储器、执行器、触发器在它的调度下正常运行。调度器有以下几个:
不是特定场景下,我们最常用的是BlockingScheduler调度器。
异常监听
定时任务在运行时,若出现错误,需要设置监听机制,我们通常结合logging模块记录错误信息。
使用示例:
from apscheduler.schedulers.blocking import BlockingScheduler import datetime from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR import logging # logging日志配置打印格式及保存位置 logging.basicConfig(level=logging.INFO, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='sche.log', filemode='a') def log_listen(event): if event.exception : print ( '任务出错,报错信息:{}'.format(event.exception)) else: print ( '任务正常运行...' ) def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) print(1/0) sched = BlockingScheduler() # 使用mysql存储任务 sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8' sched.add_jobstore('sqlalchemy',url=sql_url) # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') # 配置任务执行完成及错误时的监听 sched.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR) # 配置日志监听 sched._logger = logging sched.start()
apscheduler的封装使用
上面介绍了apscheduler框架的主要模块,我们基本能掌握怎样使用apscheduler了。下面就来封装一下apscheduler吧,以后要用直接在这份代码上修改就行了。
from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR import logging import logging.handlers import os import datetime class LoggerUtils(): def init_logger(self, logger_name): # 日志格式 formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s') log_obj = logging.getLogger(logger_name) log_obj.setLevel(logging.INFO) # 设置log存储位置 path = '/data/logs/' filename = '{}{}.log'.format(path, logger_name) if not os.path.exists(path): os.makedirs(path) # 设置日志按照时间分割 timeHandler = logging.handlers.TimedRotatingFileHandler( filename, when='D', # 按照什么维度切割, S:秒,M:分,H:小时,D:天,W:周 interval=1, # 多少天切割一次 backupCount=10 # 保留几天 ) timeHandler.setLevel(logging.INFO) timeHandler.setFormatter(formatter) log_obj.addHandler(timeHandler) return log_obj class Scheduler(LoggerUtils): def __init__(self): # 执行器设置 executors = { 'default': ThreadPoolExecutor(10), # 设置一个名为“default”的ThreadPoolExecutor,其worker值为10 'processpool': ProcessPoolExecutor(5) # 设置一个名为“processpool”的ProcessPoolExecutor,其worker值为5 } self.scheduler = BlockingScheduler(timezone="Asia/Shanghai", executors=executors) # 存储器设置 # 这里使用sqlalchemy存储器,将任务存储在mysql sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8' self.scheduler.add_jobstore('sqlalchemy',url=sql_url) def log_listen(event): if event.exception: # 日志记录 self.scheduler._logger.error(event.traceback) # 配置任务执行完成及错误时的监听 self.scheduler.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR) # 配置日志监听 self.scheduler._logger = self.init_logger('sche_test') def add_job(self, *args, **kwargs): """添加任务""" self.scheduler.add_job(*args, **kwargs) def start(self): """开启任务""" self.scheduler.start() # 测试任务 def sch_test(job_type): now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('时间:{}, {}测试apscheduler'.format(now, job_type)) print(1/0) # 添加任务,开启任务 sched = Scheduler() # 添加任务 sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5') # 开启任务 sched.start()
小结
这篇文章介绍了Python实现定时任务的又一利器apscheduler,通过简单例子及apscheduler框架的主要模块分解,我们可以根据实际需求配置好模块信息,再结合logging模块,我们可以实时监控到定时任务的运行情况。
以上就是Python实现定时任务利器之apscheduler使用详解的详细内容,更多关于Python apscheduler定时任务的资料请关注自由互联其它相关文章!