线程同步的方法有哪些?在linux下,系统提供了很多种方式来实现线程同步,其中最常用的便是互斥锁、条件变量和信号量这三种方式,可能还有很多伙伴对于这三种方法都不熟悉,下
线程同步的方法有哪些?在linux下,系统提供了很多种方式来实现线程同步,其中最常用的便是互斥锁、条件变量和信号量这三种方式,可能还有很多伙伴对于这三种方法都不熟悉,下面就给大家详细介绍下。

Linux下实现线程同步的三种方法:
一、互斥锁(mutex)
通过锁机制实现线程间的同步。
1、初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t mutex, const pthread_mutex_attr_tmutexattr);
2、加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
3、解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
4、销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
- 01#include
- 02#include
- 03#include
- 04#include
- 05 #include "iostream"
- 06 using namespace std;
- 07 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
- 08 int tmp;
- 09voidthread(voidarg)
- 10{
- 11cout<< "thread id is " << pthread_self() << endl;
- 12pthread_mutex_lock(&mutex);
- 13 tmp = 12;
- 14cout<< "Now a is " << tmp << endl;
- 15pthread_mutex_unlock(&mutex);
- 16 return NULL;
- 17}
- 18 int main()
- 19{
- 20 pthread_t id;
- 21cout<< "main thread id is " << pthread_self() << endl;
- 22 tmp = 3;
- 23cout<< "In main func tmp = " << tmp << endl;
- 24 if (!pthread_create(&id, NULL, thread, NULL))
- 25{
- 26cout<< "Create thread success!" << endl;
- 27}
- 28else
- 29{
- 30cout<< "Create thread failed!" << endl;
- 31}
- 32 pthread_join(id, NULL);
- 33pthread_mutex_destroy(&mutex);
- 34 return 0;
- 35}
- 36 //编译:g++ -o thread testthread.cpp -lpthread
复制代码
include#include#include#include
include "iostream" using namespace std; pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER; int tmp; voidthread(voidarg) { cout << "threadid is " << pthread_self() << endl; pthread_mutex_lock(&mutex); tmp = 12; cout<< "Now a is " << tmp << endl; pthread_mutex_unlock(&mutex); return NULL; }int main() { pthread_t id; cout << "main thread id is " << pthread_self() <二、条件变量(cond)
与互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分:条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待“条件变量的条件成立”而挂起;另一个线程使“条件成立”(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。
1、初始化条件变量。
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t cond, pthread_condattr_tcond_attr);
2、等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
int pthread_cond_wait(pthread_cond_t cond, pthread_mutex_t mutex);
int pthread_cond_timewait(pthread_cond_t cond,pthread_mutexmutex,consttimespec *abstime);
4、激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
5、清除条件变量。无线程等待,否则返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
- 01 [cpp] view plain copy
- 02#include
- 03#include
- 04 #include "stdlib.h"
- 05 #include "unistd.h"
- 06 pthread_mutex_t mutex;
- 07 pthread_cond_t cond;
- 08 void hander(void *arg)
- 09{
- 10free(arg);
- 11(void)pthread_mutex_unlock(&mutex);
- 12}
- 13voidthread1(voidarg)
- 14{
- 15 pthread_cleanup_push(hander, &mutex);
- 16while(1)
- 17{
- 18 printf("thread1 is running");
- 19pthread_mutex_lock(&mutex);
- 20 pthread_cond_wait(&cond, &mutex);
- 21 printf("thread1 applied the condition");
- 22pthread_mutex_unlock(&mutex);
- 23sleep(4);
- 24}
- 25pthread_cleanup_pop(0);
- 26}
- 27voidthread2(voidarg)
- 28{
- 29while(1)
- 30{
- 31 printf("thread2 is running");
- 32pthread_mutex_lock(&mutex);
- 33 pthread_cond_wait(&cond, &mutex);
- 34 printf("thread2 applied the condition");
- 35pthread_mutex_unlock(&mutex);
- 36sleep(1);
- 37}
- 38}
- 39 int main()
- 40{
- 41 pthread_t thid1,thid2;
- 42 printf("condition variable study!");
- 43 pthread_mutex_init(&mutex, NULL);
- 44 pthread_cond_init(&cond, NULL);
- 45 pthread_create(&thid1, NULL, thread1, NULL);
- 46 pthread_create(&thid2, NULL, thread2, NULL);
- 47sleep(1);
- 48do
- 49{
- 50pthread_cond_signal(&cond);
- 51}while(1);
- 52sleep(20);
- 53pthread_exit(0);
- 54 return 0;
- 55}
复制代码
[cpp] view plain copy #include #include #include"stdlib.h" #include "unistd.h" pthread_mutex_t mutex; pthread_cond_t cond;void hander(void arg) { free(arg); (void)pthread_mutex_unlock(&mutex); } voidthread1(voidarg) { pthread_cleanup_push(hander, &mutex); while(1) {printf("thread1 is running"); pthread_mutex_lock(&mutex);pthread_cond_wait(&cond, &mutex); printf("thread1 applied the condition");pthread_mutex_unlock(&mutex); sleep(4); } pthread_cleanup_pop(0); } voidthread2(void *arg) { while(1) { printf("thread2 is running");pthread_mutex_lock(&mutex); pthread_cond_wait(&cond, &mutex); printf("thread2applied the condition"); pthread_mutex_unlock(&mutex); sleep(1); } } intmain() { pthread_t thid1,thid2; printf("condition variable study!");pthread_mutex_init(&mutex, NULL); pthread_cond_init(&cond, NULL);pthread_create(&thid1, NULL, thread1, NULL); pthread_create(&thid2, NULL,thread2, NULL); sleep(1); do { pthread_cond_signal(&cond); }while(1);sleep(20); pthread_exit(0); return 0; }
- 01#include
- 02#include
- 03 #include "stdio.h"
- 04 #include "stdlib.h"
- 05 static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
- 06 static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
- 07 struct node
- 08{
- 09 int n_number;
- 10 struct node *n_next;
- 11 }*head = NULL;
- 12 static void cleanup_handler(void *arg)
- 13{
- 14 printf("Cleanup handler of second thread./n");
- 15free(arg);
- 16(void)pthread_mutex_unlock(&mtx);
- 17}
- 18 static void thread_func(voidarg)
- 19{
- 20 struct node *p = NULL;
- 21 pthread_cleanup_push(cleanup_handler, p);
- 22 while (1)
- 23{
- 24//这个mutex主要是用来保证pthread_cond_wait的并发性
- 25pthread_mutex_lock(&mtx);
- 26 while (head == NULL)
- 27{
- 28//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
- 29 //这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
- 30 //程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
- 31//这个时候,应该让线程继续进入pthread_cond_wait
- 32 // pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
- 33//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
- 34//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
- 35//用这个流程是比较清楚的
- 36 pthread_cond_wait(&cond, &mtx);
- 37 p = head;
- 38 head = head->n_next;
- 39 printf("Got %d from front of queue/n", p->n_number);
- 40free(p);
- 41}
- 42 pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
- 43}
- 44pthread_cleanup_pop(0);
- 45 return 0;
- 46}
- 47 int main(void)
- 48{
- 49 pthread_t tid;
- 50 int i;
- 51 struct node *p;
- 52//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
- 53//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
- 54 pthread_create(&tid, NULL, thread_func, NULL);
- 55sleep(1);
- 56 for (i = 0; i < 10; i++)
- 57{
- 58 p = (struct node*)malloc(sizeof(struct node));
- 59 p->n_number = i;
- 60 pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
- 61 p->n_next = head;
- 62 head = p;
- 63pthread_cond_signal(&cond);
- 64 pthread_mutex_unlock(&mtx); //解锁
- 65sleep(1);
- 66}
- 67 printf("thread 1 wanna end the line.So cancel thread 2./n");
- 68//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
- 69//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
- 70pthread_cancel(tid);
- 71 pthread_join(tid, NULL);
- 72 printf("All done -- exiting/n");
- 73 return 0;
- 74}
复制代码
include#include #include "stdio.h" #include
"stdlib.h" static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER; staticpthread_cond_t cond = PTHREAD_COND_INITIALIZER; struct node { int n_number;struct node n_next; }head = NULL; static void cleanup_handler(void arg) {printf("Cleanup handler of second thread./n"); free(arg);(void)pthread_mutex_unlock(&mtx); } static void thread_func(voidarg) {struct node p = NULL; pthread_cleanup_push(cleanup_handler, p); while (1) {//这个mutex主要是用来保证pthread_cond_wait的并发性 pthread_mutex_lock(&mtx); while (head ==NULL) { //这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何 //这里要有一个while (head ==NULL)呢?因为pthread_cond_wait里的线 //程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。//这个时候,应该让线程继续进入pthread_cond_wait //pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源 //用这个流程是比较清楚的pthread_cond_wait(&cond, &mtx); p = head; head = head->n_next; printf("Got %dfrom front of queue/n", p->n_number); free(p); } pthread_mutex_unlock(&mtx);//临界区数据操作完毕,释放互斥锁 } pthread_cleanup_pop(0); return 0; } int main(void) {pthread_t tid; int i; struct node p;//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而 //不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大pthread_create(&tid, NULL, thread_func, NULL); sleep(1); for (i = 0; i < 10;i++) { p = (struct node)malloc(sizeof(struct node)); p->n_number = i;pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁, p->n_next = head; head = p;pthread_cond_signal(&cond); pthread_mutex_unlock(&mtx); //解锁 sleep(1); }printf("thread 1 wanna end the line.So cancel thread 2./n");//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。 pthread_cancel(tid);pthread_join(tid, NULL); printf("All done -- exiting/n"); return 0; }
三、信号量(sem)
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以“sem_”打头。线程使用的基本信号量函数有四个。
1、信号量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
2、等待信号量。给信号量减1,然后等待直到信号量的值大于0。
int sem_wait(sem_t *sem);
3、释放信号量。信号量值加1。并通知其他等待线程。
int sem_post(sem_t *sem);
4、销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
int sem_destroy(sem_t *sem);
- 01#include
- 02#include
- 03#include
- 04#include
- 05#include
- 06#include
- 07 #define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", func);return;}
- 08 typedef struct _PrivInfo
- 09{
- 10 sem_t s1;
- 11 sem_t s2;
- 12 time_t end_time;
- 13}PrivInfo;
- 14 static void info_init (PrivInfo* thiz);
- 15 static void info_destroy (PrivInfo* thiz);
- 16 static void pthread_func_1 (PrivInfothiz);
- 17 static void pthread_func_2 (PrivInfothiz);
- 18 int main (int argc, char** argv)
- 19{
- 20 pthread_t pt_1 = 0;
- 21 pthread_t pt_2 = 0;
- 22 int ret = 0;
- 23 PrivInfo* thiz = NULL;
- 24 thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
- 25 if (thiz == NULL)
- 26{
- 27 printf ("[%s]: Failed to malloc priv./n");
- 28 return -1;
- 29}
- 30 info_init (thiz);
- 31 ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
- 32 if (ret != 0)
- 33{
- 34 perror ("pthread_1_create:");
- 35}
- 36 ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
- 37 if (ret != 0)
- 38{
- 39 perror ("pthread_2_create:");
- 40}
- 41 pthread_join (pt_1, NULL);
- 42 pthread_join (pt_2, NULL);
- 43 info_destroy (thiz);
- 44 return 0;
- 45}
- 46 static void info_init (PrivInfo* thiz)
- 47{
- 48 return_if_fail (thiz != NULL);
- 49 thiz->end_time = time(NULL) + 10;
- 50 sem_init (&thiz->s1, 0, 1);
- 51 sem_init (&thiz->s2, 0, 0);
- 52return;
- 53}
- 54 static void info_destroy (PrivInfo* thiz)
- 55{
- 56 return_if_fail (thiz != NULL);
- 57 sem_destroy (&thiz->s1);
- 58 sem_destroy (&thiz->s2);
- 59 free (thiz);
- 60 thiz = NULL;
- 61return;
- 62}
- 63 static void pthread_func_1 (PrivInfothiz)
- 64{
- 65 return_if_fail(thiz != NULL);
- 66 while (time(NULL) < thiz->end_time)
- 67{
- 68 sem_wait (&thiz->s2);
- 69 printf ("pthread1: pthread1 get the lock./n");
- 70 sem_post (&thiz->s1);
- 71 printf ("pthread1: pthread1 unlock/n");
- 72 sleep (1);
- 73}
- 74return;
- 75}
- 76 static void pthread_func_2 (PrivInfothiz)
- 77{
- 78 return_if_fail (thiz != NULL);
- 79 while (time (NULL) < thiz->end_time)
- 80{
- 81 sem_wait (&thiz->s1);
- 82 printf ("pthread2: pthread2 get the unlock./n");
- 83 sem_post (&thiz->s2);
- 84 printf ("pthread2: pthread2 unlock./n");
- 85 sleep (1);
- 86}
- 87return;
- 88}
复制代码
include#include#include#include
#include#include #definereturn_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n",func);return;} typedef struct _PrivInfo { sem_t s1; sem_t s2; time_tend_time; }PrivInfo; static void info_init (PrivInfo thiz); static voidinfo_destroy (PrivInfo thiz); static void pthread_func_1 (PrivInfo thiz);static void pthread_func_2 (PrivInfo thiz); int main (int argc, char argv){ pthread_t pt_1 = 0; pthread_t pt_2 = 0; int ret = 0; PrivInfo thiz = NULL;thiz = (PrivInfo )malloc (sizeof (PrivInfo)); if (thiz == NULL) { printf("[%s]: Failed to malloc priv./n"); return -1; } info_init (thiz); ret =pthread_create (&pt_1, NULL, (void)pthread_func_1, thiz); if (ret != 0) {perror ("pthread_1_create:"); } ret = pthread_create (&pt_2, NULL,(void)pthread_func_2, thiz); if (ret != 0) { perror ("pthread_2_create:"); }pthread_join (pt_1, NULL); pthread_join (pt_2, NULL); info_destroy (thiz);return 0; } static void info_init (PrivInfo thiz) { return_if_fail (thiz !=NULL); thiz->end_time = time(NULL) + 10; sem_init (&thiz->s1, 0, 1); sem_init(&thiz->s2, 0, 0); return; } static void info_destroy (PrivInfo thiz) {return_if_fail (thiz != NULL); sem_destroy (&thiz->s1); sem_destroy(&thiz->s2); free (thiz); thiz = NULL; return; } static voidpthread_func_1(PrivInfo thiz) { return_if_fail(thiz != NULL); while (time(NULL) end_time) { sem_wait (&thiz->s2); printf ("pthread1: pthread1 get thelock./n"); sem_post (&thiz->s1); printf ("pthread1: pthread1 unlock/n"); sleep(1); } return; } static void pthread_func_2 (PrivInfo thiz) { return_if_fail(thiz != NULL); while (time (NULL) < thiz->end_time) { sem_wait (&thiz->s1);printf ("pthread2: pthread2 get the unlock./n"); sem_post (&thiz->s2); printf("pthread2: pthread2 unlock./n"); sleep (1); } return; }
以上便是Linux下实现线程同步常用的三种方法,大家都知道,线程的最大的亮点便是资源共享性,而资源共享中的线程同步问题却是一大难点,希望小编的归纳能够对大家有所帮助!