哎哎哎:# t0]https://www . geeksforgeeks . org/scipy-stats-Fisk-python/
scipy.stats.fisk() 是一个 fisk 连续随机变量。也称为对数逻辑分布,等于毛刺分布,d == 1 ,用标准格式和一些形状参数定义,以完成其规格。
参数:q : 上下尾概率x : 分位数loc : 【可选】位置参数。默认= 0比例:【可选】比例参数。默认值= 1大小:【整数元组,可选】形状或随机变量。瞬间:【可选】由字母['mvsk']组成;m’=均值,‘v’=方差,‘s’= Fisher 偏斜度,‘k’= Fisher 峰度。(默认值= 'mv ')。
结果: fisk 连续随机变量
代码#1:创建 fisk 连续随机变量
from scipy.stats import fisknumargs = fisk.numargs[a] = [0.7, ] * numargsrv = fisk(a)print ("RV : \n", rv)
输出:
RV :
代码#2 : fisk 随机变量和概率分布。
import numpy as npquantile = np.arange (0.01, 1, 0.1)# Random VariatesR = fisk.rvs(a, scale = 2, size = 10)print ("Random Variates : \n", R)# PDFR = fisk.pdf(a, quantile, loc = 0, scale = 1)print ("\nProbability Distribution : \n", R)
输出:
Random Variates : [7.79438195 3.97977194 3.20802248 3.02623867 9.36996936 8.54462365 0.47436888 0.4645239 2.1188909 1.49435511]Probability Distribution : [0.00357142 0.0392706 0.07489491 0.11037659 0.1456485 0.18064439 0.21529915 0.2495491 0.28333225 0.31658852]
代码#3:图形表示。
import numpy as npimport matplotlib.pyplot as pltdistribution = np.linspace(0, np.minimum(rv.dist.b, 3))print("Distribution : \n", distribution)plot = plt.plot(distribution, rv.pdf(distribution))
输出:
Distribution : [0\. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3\. ]
代码#4:变化的位置参数
import matplotlib.pyplot as pltimport numpy as npx = np.linspace(0, 5, 100)# Varying positional argumentsy1 = fisk.pdf(x, 1, 3)y2 = fisk.pdf(x, 1, 4)plt.plot(x, y1, "*", x, y2, "r--")
输出: