当前位置 : 主页 > 编程语言 > python >

Python Unittest ddt数据驱动如何实现

来源:互联网 收集:自由互联 发布时间:2023-07-30
1、数据驱动介绍: @ddt.ddt(类装饰器,申明当前类使用ddt框架) @ddt.data(函数装饰器,用于给测试用例传递数据),支持传python所有数据类型:数字(int,long,float,compix),字符串,
1、数据驱动介绍:
  • @ddt.ddt(类装饰器,申明当前类使用ddt框架)

  • @ddt.data(函数装饰器,用于给测试用例传递数据),支持传python所有数据类型:数字(int,long,float,compix),字符串,列表1ist,元组tuple,集合,编写阅读数据文件的函数、@data入口参数加*读取

  • @ddt.unpack(函致装饰器,将传输的数据包解包),一般作用于元组tuple和列表list、字典(参数名字和个数需要与字典的键保持一致)(数组、字符串不需要)

  • @ddt.file_data(函数装饰器,可直接读取yaml/json文件)

2、数据驱动和关键驱动的区别:

Data-Driven Tests(DDT)即数据驱动测试,可以实现不同数据运行同一个测试用例。ddt本质其实就是装饰器,一组数据一个场景。
关键字驱动(核心:把业务逻相封装成关键字login,只需要调用login。)

3、混合驱动模式(关键字驱动+数据驱动)4、在进行数据驱动测试实战:需要在测试类上使用@ddt.ddt装饰器,在测试用例上使用@ddt.data装饰器。

(1)单一参数:导包——写一个参数(列表、数字、字符串)-----设置@ddt.data装饰器写入参数名----方法中写入形参*data----调用参数内容

(2)多参数的数据驱动测试(一个测试参数中含多个元素):导包——设置@ddt装饰器——设置@unpack解包——写入参数——形参传递——调用

(3)txt文件传参

(4)json文件传参

(5)yaml文件传参

(6)xlsx文件传参

注意:Python中传递可变参数:*代表顺序阅读列表类型,**代表顺序阅读对象(字典)类型,点击阅读可变参数部分可了解相关机制

# 1、单一参数的数据驱动
 
# 前置步骤:
# 使用语句import unittest导入测试框架
# 使用语句from ddt import ddt, data导入单一参数的数据驱动需要的包
 
# 示例会执行三次test,参数分别为'666','777','888'
import ddt
import unittest
@ddt.ddt  # 设置@ddt装饰器
class BasicTestCase(unittest.TestCase):
    @ddt.data('666', '777', '888')  # 设置@data装饰器,并将传入参数写进括号
    def test(self, *data):  # test入口设置形参
        print('数据驱动的number:', data)
# 程序会执行三次测试,入口参数分别为666、777、888
 
 
        
# 2、多参数的数据驱动
# 在单一参数包的基础上,额外导入一个unpack的包,from ddt import ddt, data, unpack
# 步骤:导包——设置@ddt装饰器——设置@unpack解包——写入参数——形参传递——调用
import ddt
import unittest
 
Testdata = [
    {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
    {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
    {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
    {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
]
 
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    
    #方式一:直接将列表放到data
    @ddt.data(['张三', '18'], ['李四', '19'])  # 设置@data装饰器,并将同一组参数写进中括号[]
    @ddt.unpack  # 设置@unpack装饰器顺序解包,缺少解包则相当于name = ['张三', '18']
    def test(self, name, age):
        print('姓名:', name, '年龄:', age)
# 程序会执行两次测试,入口参数分别为['张三', '18'],['李四', '19']
 
        
    #方式二:写一个列表后,使用*访问列表到data
    @ddt.data(*Testdata)
    @ddt.unpack # 设置@unpack装饰器顺序解包
    def test_DataDriver(self, *Data):
        #print('DDT数据驱动实战演示:', Data)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
        
 
#3、 txt文件接收参数
# 新建num文件,txt格式
    # (1)单一参数按行存储777,888,999
    # (2)多参数txt文件
        # dict文件内容(参数列表)(按行存储):
        # 张三,18
        # 李四,19
# 编辑阅读数据文件的函数
# 记住读取文件一定要设置编码方式,否则读取的汉字可能出现乱码!!!!!!
import ddt
import unittest
def read_num():
    lis = []    # 以列表形式存储数据,以便传入@data区域
    with open('num.txt', 'r', encoding='utf-8') as file:    # 以只读'r',编码方式为'utf-8'的方式,打开文件'num',并命名为file
        for line in file.readlines():   # 循环按行读取文件的每一行
            lis.append(line.strip('\n'))  #单一参数,每读完一行将此行数据加入列表元素,记得元素要删除'/n'换行符!!!
            #lis.append(line.strip('\n').split(','))  # 多参驱动,删除换行符,根据,分割后,列表为['张三,18', '李四,19', '王五,20']
        return lis    # 将列表返回,作为@data接收的内容
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_num())  # 入口参数设定为read_num(),因为返回值是列表,所以加*表示逐个读取列表元素
    #txt表格有多少个值,设置多少个接收参数的形参
    def test(self, name,age):
        print('数据驱动的number:', name,age)
 
 
# 4、JSON文件传参:数据分离
# 多参数——json文件
# 步骤和单一参数类似,仅需加入@unpack装饰器以及多参数传参入口
# dict文件内容(参数列表)(非规范json文件格式):
# 单一参数:["666","777","888"]
# 多个参数:[["张三", "18"], ["李四", "19"], ["王五", "20"]]
# 注意json文件格式字符串用双引号
import ddt
import unittest
import json
def read_dict_json():
    return json.load(open('dict.json', 'r', encoding='utf-8'))  # 使用json包读取json文件,并作为返回值返回
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_dict_json())
    @ddt.unpack     # 使用@unpack装饰器解包
    def test(self, name, age):    # 因为是非规范json格式,所以形参名无限制,下文会解释规范json格式
        print('姓名:', name, '年龄:', age)
    
 
# 4、JSON文件传参:数据分离
# json文件三种形式:
# (1)单一参数:["666","777","888"]
# (2)多个参数:[["张三", "18"], ["李四", "19"], ["王五", "20"]]
# (3)JSON格式读取,每一组参数以对象形式存储:
# [
#   {"name":"张三", "age":"18"},
#   {"name":"李四", "age":"19"},
#   {"name":"王五", "age":"20"}
# ]
# 单一参数时无需使用unpack,多参数需要使用unpack解包,注意json文件格式字符串用双引号
import ddt
import unittest
import json
 
#方式1:非正式json格式使用
def read_dict_json():
    return json.load(open('dict.json', 'r', encoding='utf-8'))  # 使用json包读取json文件,并作为返回值返回
 
#方式2:JSON格式读取,提取已读完后的json文件(字典形式),通过遍历获取元素,并返回
def read_dict_json():
    lis = []
    dic = json.load(open('dict.json', 'r', encoding='utf-8'))
    # 此处加上遍历获取语句,下文yaml格式有实例,方法一样
    for item in dic:
        lis.append(item)
    return lis
 
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_dict_json())
    @ddt.unpack     # 使用@unpack装饰器解包
    def test(self, name, age):    # 因为是非规范json格式,所以形参名无限制,下文会解释规范json格式
        print('姓名:', name, '年龄:', age)
 
 
#5、多参数yaml
# 以对象形式存储yml数据(字典)
# yaml格式文件内容
# -
#   name: 张三
#   age: 18
# -
#   name: 李四
#   age: 19
# -
#   name: 王五
#   age: 20
# '-'号之后一定要打空格!!!
# ':'号之后一定要打空格!!!
 
# 入口参数与数据参数key命名统一即可导入
import ddt
import unittest
import yaml
@ddt.ddt
class BasicTestCase(unittest.TestCase):
 
    #方式1:形参入口和数据参数key命名统一
    @ddt.file_data('./data/dict.yml')
    def test(self, name, age):  # 设置入口参数名字与数据参数命名相同即可
        print('姓名是:', name, '年龄为:', age)
 
    #方式2:入口参数与数据参数命名不统一
    @ddt.file_data('./data/dict.yml')
    def test(self, **cdata):  # Python中可变参数传递的知识:**按对象顺序执行
        print('姓名是:', cdata['name'], '年龄为:', cdata['age'])    # 通过对象访问语法即可调用

例子如下:

方式一:测试数据直接写成列表形式,使用ddt.data(*Data)传值

##2.12.2  DDT在自动化测试中的应用(传列表)
 
import ddt
import unittest
 
# 给4条测试数据
    Testdata = [
        {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
        {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
    ]
@ddt.ddt
class TestModules(unittest.TestCase):
    def setUp(self):
        print('testcase beaning....')
    def tearDown(self):
        print('testcase ending.....')
        
    @ddt.data(*Data)
    def test_DataDriver(self,Data):
        #print('DDT数据驱动实战演示:',Testdata)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
if __name__ == '__main__':
    unittest.main()

方式二:数据写到方法形式readData(),使用ddt.data(*readData())传值

import ddt
import unittest
 
# 给4条测试数据
def readData():
    Testdata = [
        {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
        {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
    ]
    return TestData
 
@ddt.ddt
class TestModules(unittest.TestCase):
    def setUp(self):
        print('testcase beaning....')
    def tearDown(self):
        print('testcase ending.....')
    @ddt.data(*readData())
    def test_DataDriver(self,Data):
        #print('DDT数据驱动实战演示:',Testdata)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
if __name__ == '__main__':
    unittest.main()

【文章原创作者:高防ip http://www.558idc.com/gfip.html欢迎留下您的宝贵建议】

上一篇:Python基础之模块如何使用
下一篇:没有了
网友评论