当前位置 : 主页 > 编程语言 > python >

Pandas+Pyecharts | 医院药品销售数据可视化

来源:互联网 收集:自由互联 发布时间:2023-08-12
本期我们通过分析某医院半年内的药品销售数据,看看医院那些药物购买者较多,那些天购药者较多等等,希望对小伙伴们有所帮助。 涉及到的库: Pandas — 数据处理 Pyecharts — 数据可

本期我们通过分析某医院半年内的药品销售数据,看看医院那些药物购买者较多,那些天购药者较多等等,希望对小伙伴们有所帮助。
涉及到的库:
  • Pandas — 数据处理

  • Pyecharts — 数据可视化

  • collections — 数据统计

可视化部分:

  • Line — 折线图
  • Bar — 柱状图
  • Calendar— 日历图
  • stylecloud — 词云图

进入正题~~

1. 导入模块

import jieba
import stylecloud
import pandas as pd
from PIL import Image
from collections import Counter
from pyecharts.charts import Geo
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Pie
from pyecharts.charts import Calendar
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType,SymbolType,ChartType

2. Pandas数据处理

2.1 读取数据

df = pd.read_excel("医院药品销售数据.xlsx")

结果:

Pandas+Pyecharts | 医院药品销售数据可视化

2.2 数据大小

df.shape
(6578, 7)

一共有6578条药品购买数据。

2.3 查看索引、数据类型和内存信息

df.info()
部分列存在数据缺失。

2.4 统计空值数据

df.isnull().sum()

Pandas+Pyecharts | 医院药品销售数据可视化

2.5 输出空行

df[df.isnull().T.any()]
Pandas+Pyecharts | 医院药品销售数据可视化
因为购药时间在后面的分析中会用到,所以我们将购药时间为空的行删除,社保卡号用"000"填充,社保卡号、商品编码为一串数字,应为str类型,销售数量应为int类型:
df1 = df.copy()
df1 = df1.dropna(subset=['购药时间'])
df1[df1.isnull().T.any()]
df1['社保卡号'].fillna('0000', inplace=True)
df1['社保卡号'] = df1['社保卡号'].astype(str)
df1['商品编码'] = df1['商品编码'].astype(str)
df1['销售数量'] = df1['销售数量'].astype(int)
Pandas+Pyecharts | 医院药品销售数据可视化

2.6 销售数量,应收金额,实收金额三列的统计情况

df1[['销售数量','应收金额','实收金额']].describe()
Pandas+Pyecharts | 医院药品销售数据可视化
数据中存在负值,显然不合理,我们将其转换为正值:
df2 = df1.copy()
df2['销售数量'] = df2['销售数量'].abs()
df2['应收金额'] = df2['应收金额'].abs()
df2['实收金额'] = df2['实收金额'].abs()
Pandas+Pyecharts | 医院药品销售数据可视化

2.7 列拆分(购药时间列拆分为两列)

df3 = df2.copy()
df3[['购药日期', '星期']] = df3['购药时间'].str.split(' ', 2, expand = True)
df3 = df3[['购药日期', '星期','社保卡号','商品编码', '商品名称', '销售数量', '应收金额', '实收金额' ]]

Pandas+Pyecharts | 医院药品销售数据可视化


3. Pyecharts数据可视化

3.1 一周各天药品销量柱状图

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#ed1941'}], false)"""

g1 = df3.groupby('星期').sum()
x_data = list(g1.index)
y_data = g1['销售数量'].values.tolist()
b1 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='一周各天药品销量',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b1.render_notebook()

Pandas+Pyecharts | 医院药品销售数据可视化

每天销量整理相差不大,周五、周六偏于购药高峰。

3.2 药品销量前十柱状图

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#08519c'}], false)"""

g2 = df3.groupby('商品名称').sum().sort_values(by='销售数量', ascending=False)
x_data = list(g2.index)[:10]
y_data = g2['销售数量'].values.tolist()[:10]
b2 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='药品销量前十',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b2.render_notebook()
Pandas+Pyecharts | 医院药品销售数据可视化

可以看出:苯磺 酸氨氯地平片(安内真)、开博通、酒石酸美托洛尔片(倍他乐克)等治疗高血压、心绞痛药物购买量比较多。。

3.3 药品销售额前十柱状图

Pandas+Pyecharts | 医院药品销售数据可视化

销售额与销量基本成正比。
3.4 一周每天订单量

Pandas+Pyecharts | 医院药品销售数据可视化

从一周各天数据分布来看,每天销量整理相差不大,周五、周六偏于购药高峰。
3.5 自然月每天订单数量

Pandas+Pyecharts | 医院药品销售数据可视化

可以看出:5日、15日、25日是药品销售高峰期,尤其是每月15日。
3.6 日历图
日历图可以更直观的看到一个月内每天和每星期的销量:

Pandas+Pyecharts | 医院药品销售数据可视化

3.6 药品名称词云

Pandas+Pyecharts | 医院药品销售数据可视化


Pandas+Pyecharts | 医院药品销售数据可视化

篇幅原因,部分代码未完全展示,如果需要可在下方获取,也可在线运行(含全部代码+数据文件)

https://www.heywhale.com/mw/project/61b83bd9c63c620017c629bc

【文章转自:香港多ip服务器 http://www.558idc.com/hkzq.html提供,感恩】

网友评论