当前位置 : 主页 > 编程语言 > python >

pythonXarray处理设置二维数组作为coordinates方式

来源:互联网 收集:自由互联 发布时间:2023-08-17
目录 python Xarray处理设置二维数组作为coordinates Xarray(python)读取​Sentinel-5P(S5P)哨兵数据 使用panoly可视化 使用python里的工具包读取 不足使用xarray读取含Groups的嵌套文件如.nc4时 总结 pytho
目录
  • python Xarray处理设置二维数组作为coordinates
  • Xarray(python)读取​Sentinel-5P(S5P)哨兵数据
    • 使用panoly可视化
    • 使用python里的工具包读取
    • 不足使用xarray读取含Groups的嵌套文件如.nc4时
  • 总结

    python Xarray处理设置二维数组作为coordinates

    因为想做笔记,所以直接做的很粗糙了,后面再更新!

    import cv2
    import numpy as np
    from osgeo import gdal
    import os
    import xarray as xr 
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    fig, ax = plt.subplots(figsize=(6, 1))
    fig.subplots_adjust(bottom=0.5)
    cmap = mpl.cm.cool
    norm = mpl.colors.Normalize(vmin=5, vmax=10)
    fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
                 cax=ax, orientation='horizontal', label='Some Units')
    """
    res = cv2.resize(RasterArrray, dsize=(441,251), interpolation=cv2.INTER_CUBIC)
    Here img is thus a numpy array containing the original image, whereas res is a numpy array containing the resized image. An important aspect is the interpolation parameter: there are several ways how to resize an image. Especially since you scale down the image, and the size of the original image is not a multiple of the size of the resized image. Possible interpolation schemas are:
    INTER_NEAREST - a nearest-neighbor interpolation
    INTER_LINEAR - a bilinear interpolation (used by default)
    INTER_AREA - resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
    INTER_CUBIC - a bicubic interpolation over 4x4 pixel neighborhood
    INTER_LANCZOS4 - a Lanczos interpolation over 8x8 pixel neighborhood
    """
    def GetTimeSerises_nc(ncVariable):
        """
        获取 时间序列
        :param ncVariable:
        :return:
        """
    timeSerises = ncVariable.time.data
    return timeSerises
    inNcFile = r"./solar-1979-01.nc"
    inNc = xr.open_dataset(inNcFile)
    print(inNc)
    print(inNc.LATIXY.data)
    import pandas as pd 
    # 创建 dataset
    ds = xr.Dataset()
    numLon = 1400
    numLat = 800
    # LATIXY LONGXY
    inLat = inNc.LATIXY.data
    inLon = inNc.LONGXY.data
    # print("np.min(inLon):{}, np.max(inLon):{}".format(np.min(inLon), np.max(inLon)))
    # print("np.min(inLat):{}, np.max(inLat):{}".format(np.min(inLat), np.max(inLat)))
    lon = np.linspace(np.min(inLon), np.max(inLon), num=numLon, endpoint=True, retstep=False, dtype=None, axis=0)
    lat = np.linspace(np.min(inLat), np.max(inLat), num=numLat, endpoint=True, retstep=False, dtype=None, axis=0)
    lon, lat = np.meshgrid(lon, lat)
    ds = ds.assign_coords({
        "lat": (["x", "y"], lat),
        "lon": (["x", "y"], lon)
    })
    solor = np.full(shape=(10, numLat, numLon) , fill_value= np.nan )
    ncVariable = inNc.FSDS
    timeSerises = GetTimeSerises_nc(ncVariable)
    i = 0
    for timeSerise in timeSerises[0:10]:
        print(timeSerise)
        # 获取数据
        arr = inNc.FSDS.loc[timeSerise].data
        print(arr.shape)
        solor[i,:,:] = cv2.resize(arr, dsize=(numLon,numLat), interpolation = cv2.INTER_LINEAR)
        print(arr.shape)
        i= i+1
        print(i)
    ds["solor"] = xr.DataArray(solor, dims=['time','x', 'y'], )
    ds.coords['time'] = pd.date_range(start='1979-01-01',periods=10,freq='3H')
    # ds["lat"]  = xr.DataArray(lat, dims=['lat'], )
    # ds["lon"]  = xr.DataArray(lon, dims=['lon'], )
    print(ds)
    ds.to_netcdf(r"./test_1.nc")

    主要解决问题的代码块在这里:

    lon = np.linspace(np.min(inLon), np.max(inLon), num=numLon, endpoint=True, retstep=False, dtype=None, axis=0)
    lat = np.linspace(np.min(inLat), np.max(inLat), num=numLat, endpoint=True, retstep=False, dtype=None, axis=0)
    lon, lat = np.meshgrid(lon, lat)
    ds = ds.assign_coords({
        "lat": (["x", "y"], lat),
        "lon": (["x", "y"], lon)
    })
    ds["solor"] = xr.DataArray(solor, dims=['time','x', 'y'], )
    ds.coords['time'] = pd.date_range(start='1979-01-01',periods=10,freq='3H')

    结果:

    参考链接https://stackoverflow.com/questions/67695672/xarray-set-new-2d-coordinate-as-dimension

    Xarray(python)读取​Sentinel-5P(S5P)哨兵数据

    需求分析:NC文件的常规包netcdf4使用手感较xarray略显笨拙,故尝试使用xarray读取包含Group的.nc4文件

    数据:S5P二级数据:S5P_RPRO_L2__HCHO, 来源:欧洲哥白尼,或NASA(推荐,因为好下载)

    使用panoly可视化

    (1)导入后的界面:

    (2)选择变量后,点击Create Plot按钮可视化:

    即可得到HCHO的Plot图以及Array可视化。

    使用python里的工具包读取
    import os
    import xarray as xr
    import netCDF4 as nc  # 对于nc4文件,其内含groups,
    Dir = ['../S5P_Pre/Wget_HCHO']   # 时间跨度180514 ~ 190805
    file = os.listdir(Dir[0])
    file.sort(key = lambda x:int(x.split('___')[1][:8]))  # 按年月日排序
    # (1)使用nc包打开
    ns = nc.Dataset(os.path.join(Dir[0], file[0]))   #这里的数据存储在groups里面的PRODUCT里面
    hcho = ns['PRODUCT']['formaldehyde_tropospheric_vertical_column'][:]
    # (2) 使用xarray包打开 —— 推荐方式
    xs = xr.open_dataset(os.path.join(Dir[0], file[0]), group = 'PRODUCT')  # 这里需用group函数指定组名称

    (1)netcdf4的读取结果:

    In[29]: ns
    Out[29]: Subset parameters: {"PRODUCT": ["S5P_L2__HCHO__.1"], "INFILENAMES": ["S5P_RPRO_L2__HCHO___20180514T023918_20180514T042246_03018_01_010105_20190203T205044.nc"], "INFILETYPE": ["nc"], "OUTFILETYPE": ["nc4"], "TIMENAME": [["TROP2010", "/PRODUCT/time", "/PRODUCT/delta_time"]], "VARNAMES": ["/PRODUCT/formaldehyde_tropospheric_vertical_column", "/PRODUCT/qa_value", "/PRODUCT/time_utc", "/PRODUCT/scanline", "/PRODUCT/ground_pixel"], "BOXLONRANGE": [73.0, 136.0], "BOXLATRANGE": [3.0, 54.0], "TIMERANGE": [800414432.0, 800496009.0], "GRIDTYPES": ["SWATH"], "CONVERTFILETYPE": [true]}
        dimensions(sizes): 
        variables(dimensions): 
        groups: PRODUCT, METADATA
    In[30]: ns['PRODUCT']
    Out[30]: <class 'netCDF4._netCDF4.Group'>
    group /PRODUCT:
        dimensions(sizes): time(1), scanline(725), ground_pixel(237)
        variables(dimensions): uint16 time_idx(time), uint16 scanline_idx(scanline), uint16 ground_pixel_idx(ground_pixel), float32 longitude(time,scanline,ground_pixel), float32 latitude(time,scanline,ground_pixel), int32 time(time), int32 delta_time(time,scanline,ground_pixel), float32 formaldehyde_tropospheric_vertical_column(time,scanline,ground_pixel), uint8 qa_value(time,scanline,ground_pixel), <class 'str'> time_utc(time,scanline), int32 scanline(scanline), int32 ground_pixel(ground_pixel)
        groups: SUPPORT_DATA
    In[31]: ns['PRODUCT'].variables.keys()
    Out[31]: dict_keys(['time_idx', 'scanline_idx', 'ground_pixel_idx', 'longitude', 'latitude', 'time', 'delta_time', 'formaldehyde_tropospheric_vertical_column', 'qa_value', 'time_utc', 'scanline', 'ground_pixel'])

    (2) xarray的读取结果:

    xs
    Out[34]: 
    <xarray.Dataset>
    Dimensions:                                    (ground_pixel: 237, scanline: 725, time: 1)
    Coordinates:
      * time                                       (time) datetime64[ns] 2018-05-14
      * scanline                                   (scanline) float64 1.507e+03 ....
      * ground_pixel                               (ground_pixel) float64 1.0 ......
    Data variables:
        time_idx                                   (time) float32 0.0
        scanline_idx                               (scanline) float32 1.506e+03 ....
        ground_pixel_idx                           (ground_pixel) float32 0.0 ......
        longitude                                  (time, scanline, ground_pixel) float32 ...
        latitude                                   (time, scanline, ground_pixel) float32 ...
        delta_time                                 (time, scanline, ground_pixel) timedelta64[ns] ...
        formaldehyde_tropospheric_vertical_column  (time, scanline, ground_pixel) float32 ...
        qa_value                                   (time, scanline, ground_pixel) float32 ...
        time_utc                                   (time, scanline) object nan .....

    不足使用xarray读取含Groups的嵌套文件如.nc4时

    需要先知道其所在的Gropus名称,即需要先用panoly软件或nc4包打开。

    总结

    上一篇:macbook安装环境chatglm2-6b的详细过程
    下一篇:没有了
    网友评论